Volume 2 · Issue 5 (2025)
Regression Estimation with Generalized Additive Noise
Jiahao Mou, Cong Wu
School of Science, Hubei University of Technology, Wuhan 430068, China
Abstract: In this paper, we study the regression estimation with generalized additive noise, which includes the classical regression estimation and regression estimation with additive noise. Based on the generalized additive noise model, we build a regression estimator and study it's convergence rate.
Keywords: Regression estimation; Generalized additive noise model; Convergence rate
References
[1]
Caron, A., Baio, G., Manolopoulou, I.: Estimating individual treatment effects using non-parametric regression models: A review. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY. 185, 1115–1149 (2022) https://doi.org/10.1111/rssa.12824
[2]
Almanjahie, I.M., Fetitah, O., Attouch, M.K., Louhab, H.: Asymptotic normality of the robust equivariant estimator for functional nonparametric models. MATHEMATICAL PROBLEMS IN ENGINEERING. 2022 (2022). https://doi.org/10.1155/2022/8989037
[3]
Alexander, M.: Deconvolution Problems in Nonparametric Statistics. Springer, Berlin (2009). https://doi.org/10.1007/978-3-540-87557-4
[4]
Guo,H.,Liu,Y.: Convergence rates of multivariate regression estimators with errors-in-variables. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION. 38, 1564–1588 (2017). https://doi.org/10.1080/01630563.2017.1349145
[5]
Bouzebda, S., El-hadjali, T.: Uniform convergence rate of the kernel regression estimator adaptive to intrinsic dimension in presence of censored data. JOURNAL OF NONPARAMETRIC STATISTICS. 32, 864–914 (2020) https://doi.org/10.1080/10485252.2020.1834107
[6]
Pinelis,I.: Monotonicity preservation properties of kernel regression estimators. STATISTICS & PROBABILITY LETTERS. 177 (2021) https://doi.org/10.1016/j.spl.2021.109157
[7]
Ali, T.H.: Modification of the adaptive nadaraya-watson kernel method for nonparametric regression (simulation study). COMMUNICATIONS INSTATISTICS-SIMULATION AND COMPUTATION. 51, 391–403 (2022). https://doi.org/10.1080/03610918.2019.1652319
[8]
Chu, B.M., Jacho-Chavez, D.T., Linton, O.B.: Standard errors for nonparametric regression. ECONOMETRIC REVIEWS. 39, 674–690 (2020). https://doi.org/10.1080/07474938.2020.1772563
[9]
Cleanthous, G., Georgiadis, A.G., Kerkyacharian, G., Petrushev, P., Picard, D.: Kernel and wavelet density estimators on manifolds and more general metric spaces. BERNOULLI. 26,1832–1862 (2020) https://doi.org/10.3150/19-BEJ1171
[10]
Chesneau, C., El Kolei, S., Kou, J., Navarro, F.: Nonparametric estimation in a regression model with additive and multiplicative noise. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS. 380 (2020). https://doi.org/10.1016/j.cam.2020.112971
[11]
Chen, J., Kou, J.: Nonparametric pointwise estimation for a regression model with multiplicative noise. JOURNAL OF FUNCTION SPACES. 2021 (2021). https://doi.org/10.1155/2021/1599286
[12]
Delaigle, A., Hall, P.: Estimation of observation-error variance in errors-in-variables regression. STATISTICA SINICA. 21, 1023–1063 (2011). https://doi.org/10.5705/ss.2009.039
[13]
Kato, K., Sasaki, Y.: Uniform confidence bands for nonparametric errors-invariables regression. JOURNAL OF ECONOMETRICS. 213, 516–555 (2019) https://doi.org/10.1016/j.jeconom.2019.05.021
[14]
Delaigle, A.: Nonparametric kernel methods with errors-in-variables: Constructing estimators, computing them, and avoiding common mistakes. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS. 56, 105–124 (2014) https://doi.org/10.1111/anzs.12066
[15]
Politis,D.N.,Vasiliev,V.A.: Non-parametric sequential estimation of a regression function based on dependent observations. SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS. 32, 243–266 (2013) https://doi.org/10.1080/07474946.2013.803398
Download PDF