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Abstract: In this paper, we study the regression estimation with generalized additive noise, 
which includes the classical regression estimation and regression estimation with additive noise. 
Based on the generalized additive noise model, we build a regression estimator and study it's 
convergence rate. 
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1. Introduction 

Nonparametric regression models play an important role in medical statistics and economic 
statistics. Caron [1] examined the problem of estimating heterogeneous treatment effects using 
non-parametric regression-based methods, starting from an empirical study aimed at investigating 
the effect of participation in school meal programs on health indicators. Almanjahie [2] proposed a 
family of robust nonparametric estimators with unknown scale parameters for regression function 
based on the kernel method. The superiority of the proposed methods was shown through numerical 
and real data studies. 
 
2. Construction of Kernel-Based Estimators for the Generalized Additive Noise Model 

The goal of this paper is to estimate a regression function 𝑚𝑚 from independent and identically 
distributed (i.i.d) data (𝑊𝑊𝑗𝑗 ,𝑌𝑌𝑗𝑗)(𝑗𝑗 = 1,2, . . . ,𝑛𝑛) generated by the model 

Y = m(X) + ε, W = X + B ⋅ δ (1) 

where 𝑋𝑋 stands for a real-valued random variable with unknown probability density  
𝑓𝑓 on 𝑅𝑅𝑑𝑑, 𝛿𝛿 denotes an independent random noise with the probability density 𝑔𝑔 and 𝜀𝜀 ∈ {0,1} 

Bernoulli random variable with 𝑃𝑃(𝐵𝐵 = 1) = 𝛼𝛼, 𝛼𝛼 ∈ [0,1]. 
When 𝛼𝛼 = 1, (1.1) reduces to the deconvolution model. For the study of errors-in-variables, 

Meister [3] studied regression estimation with one-dimensional data through kernel method. Guo [4] 
et al. extended Meister’s theorems and studied the optimal convergence rate of the estimator with 
additive noise.  

While 𝛼𝛼 = 0, (1.1) corresponds to the traditional regression model. Bouzebda [5] studied the 
bandwidth consistency of the kernel-type estimator in the case of weaker  

kernel conditions and extended existing uniform bounds on kernel regression estimator. Pinelis 
[6] considered three common classes of kernel regression estimators and proved related properties. 
Ail [7] proposed a new improvement of the Nadaraya-Watson kernel nonparametric regression 
estimator. The bandwidth of this new improvement was obtained depending on the three different 
statistical indicators. Including comparisons with four others kernel estimators. The proposed 
estimator in the case of harmonic mean is more accurate than all classical methods. 
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Research on kernel methods, Chu et al. [8] proposed five point-wise consistent and asymptotic 
normal estimators of the asymptotic variance function of the Nadaraya-Watson kernel estimator for 
nonparametric regression. Cleanthous [9] considered the density estimation problem of observations 
taking values in classical or non-classical spaces. Kernel and linear and nonlinear wavelet density 
estimators are studied. The convergence rates of these estimators are established and discussed. 

In the study of wavelet estimation, Chesneau et al. [10] studied the estimation problem in a class 
of nonparametric regression models with multiplicative and additive noise. In this context, two kinds 
of wavelet estimation are proposed. And it is proved that they have faster convergence speed in 
Besov space. Kou et al. [11] studied a class of generalized nonparametric regression estimation 
models with multiplicative noise. And they proved the convergence rates of these regression 
estimators under point-wise error in Besov space. 

The above scholars have studied the classical regression estimation and regression estimation 
with additive noise. In fact, the presence of noise within the data remains uncertain. Therefore, 
generalized additive noise model is introduced for the regression estimation. It can reduce to classical 
regression estimation as well as regression estimation with additive noise. More references are in 
[12-15]. 

Clearly, the density ℎ𝑤𝑤 of 𝑊𝑊 in (1) satisfies 

ℎ𝑤𝑤 = (1 − 𝛼𝛼)𝑓𝑓 + 𝛼𝛼𝛼𝛼 ∗ 𝑔𝑔 (2) 
because 𝑃𝑃{𝑊𝑊 < 𝑡𝑡} = 𝑃𝑃{𝐵𝐵 = 0}𝑃𝑃{𝑋𝑋 + 𝐵𝐵 ⋅ 𝛿𝛿|𝐵𝐵=0 < 𝑡𝑡} + 𝑃𝑃{𝐵𝐵 = 1}𝑃𝑃{𝑋𝑋 + 𝐵𝐵 ⋅ 𝛿𝛿|𝐵𝐵=1 < 𝑡𝑡} = (1 −

𝛼𝛼)𝑃𝑃{𝑋𝑋 < 𝑡𝑡} + 𝛼𝛼𝛼𝛼{𝑋𝑋 + 𝛿𝛿 < 𝑡𝑡}. Furthermore,  
when the function 

𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡) = [(1 − 𝛼𝛼) + 𝛼𝛼𝑔𝑔𝑓𝑓𝑓𝑓(𝑡𝑡)]−1ℎ𝑤𝑤
𝑓𝑓𝑓𝑓(𝑡𝑡): = 𝐺𝐺𝛼𝛼−1(𝑡𝑡)ℎ𝑤𝑤

𝑓𝑓𝑓𝑓(𝑡𝑡) 
𝐺𝐺𝛼𝛼(𝑡𝑡) = 1 − 𝛼𝛼 + 𝛼𝛼𝑔𝑔𝑓𝑓𝑓𝑓(𝑡𝑡) 

has nonzeros on 𝑅𝑅𝑑𝑑, where 𝑓𝑓𝑓𝑓𝑓𝑓 is the Fourier transform of 𝑓𝑓 ∈ 𝐿𝐿1(𝑅𝑅𝑑𝑑) defined by 

𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡): = � 𝑓𝑓(𝑥𝑥)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑
𝑅𝑅𝑑𝑑

 

To estimate the regression function, we need the assumption of function space as in [4]. 
𝜁𝜁𝑥𝑥,𝑠𝑠 = �(𝑚𝑚, 𝑓𝑓𝑋𝑋)|‖𝑓𝑓𝑋𝑋‖∞ + ‖𝑚𝑚2𝑓𝑓𝑋𝑋‖∞ ≤ 𝐶𝐶1,𝑚𝑚𝑓𝑓𝑋𝑋 ∈ 𝐿𝐿(𝑅𝑅𝑑𝑑); 𝑓𝑓𝑋𝑋(𝑥𝑥) ≥ 𝐶𝐶2; � (3) 

𝑓𝑓𝑋𝑋 and 𝑚𝑚𝑓𝑓𝑋𝑋 satisfy local Holder condition of order 𝑠𝑠 at 𝑥𝑥 ∈ 𝑅𝑅𝑑𝑑  for some positive constants 
𝐶𝐶1,𝐶𝐶2 > 0. A function 𝑓𝑓 is said to satisfy local Holder condition of order𝑠𝑠, if there exists a constant 
𝐶𝐶 > 0 such that for each 𝛽𝛽 with |𝛽𝛽| = ⌊𝑠𝑠⌋. 

�𝜕𝜕𝛽𝛽𝑓𝑓(𝑦𝑦) − 𝜕𝜕𝛽𝛽𝑓𝑓(𝑧𝑧)� ≤ 𝐶𝐶|𝑦𝑦 − 𝑧𝑧|𝑠𝑠−|𝛽𝛽|for𝑦𝑦, 𝑧𝑧 ∈ 𝑄𝑄(𝑥𝑥, 𝑟𝑟) 
where 𝑄𝑄(𝑥𝑥, 𝑟𝑟): = {𝑦𝑦 = (𝑦𝑦1,𝑦𝑦2, . . . ,𝑦𝑦𝑑𝑑)|𝑦𝑦𝑖𝑖 ∈ (𝑥𝑥𝑖𝑖 − 𝑟𝑟, 𝑥𝑥𝑖𝑖 + 𝑟𝑟), 𝑖𝑖 = 1,2, . . . ,𝑑𝑑} with 𝑟𝑟 > 0. 
In the second section of the article, we estimate the regression function of generalized additive 

noise model through kernel method. We demonstrate the convergence rate 𝑛𝑛−
𝑠𝑠

2𝑠𝑠+2𝛽𝛽(𝛼𝛼)+𝑑𝑑  of the 

estimator with generalized additive noise. 
 

3. The Convergence Rate of Regression Estimator with Generalized Additive Noise 
This section aims to give a convergence rate of regression estimators 𝑚𝑚�(𝑥𝑥) for the function 𝑚𝑚 in 

model (1). 
To introduce our regression estimator, we firstly choose a kernel function 𝐾𝐾(𝑥𝑥) satisfying  

(𝑖𝑖)𝐾𝐾 ∈ 𝐿𝐿1(𝑅𝑅𝑑𝑑) ∩ 𝐿𝐿2(𝑅𝑅𝑑𝑑)  𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐾𝐾𝑓𝑓𝑓𝑓 ⊂ [−1,1]𝑑𝑑 
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(𝑖𝑖𝑖𝑖)� 𝐾𝐾(𝑥𝑥)𝑥𝑥𝛾𝛾
𝑅𝑅𝑑𝑑

𝑑𝑑𝑑𝑑 = 𝛿𝛿0,|𝛾𝛾| for |𝛾𝛾| = 0,1, . . . ,𝑛𝑛 

(𝑖𝑖𝑖𝑖𝑖𝑖)� 𝐾𝐾(𝑥𝑥)|𝑥𝑥|𝑠𝑠
𝑅𝑅𝑑𝑑

𝑑𝑑𝑑𝑑 < ∞. 

Defining 𝐾𝐾ℎ(𝑥𝑥) = 1
ℎ
𝐾𝐾(𝑥𝑥

ℎ
). Then, our regression estimator with generalized additive noise 𝑚𝑚�  is 

built as 

𝑚𝑚�(𝑥𝑥) =
𝑝̂𝑝(𝑥𝑥)
𝑓𝑓(𝑥𝑥)

(4) 

 
where  

𝑓𝑓(𝑥𝑥) =
1
𝑛𝑛
�

1
(2𝜋𝜋)𝑑𝑑 �

𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝐾𝐾𝑓𝑓𝑓𝑓(ℎ𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖𝜔𝜔𝑗𝑗

𝐺𝐺𝛼𝛼(𝑡𝑡)𝑅𝑅𝑑𝑑
𝑑𝑑𝑑𝑑

𝑛𝑛

𝑗𝑗=1

(5) 

𝑝̂𝑝(𝑥𝑥) =
1
𝑛𝑛
�𝑌𝑌𝑗𝑗

1
(2𝜋𝜋)𝑑𝑑 �

𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝐾𝐾𝑓𝑓𝑓𝑓(ℎ𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖𝜔𝜔𝑗𝑗

𝐺𝐺𝛼𝛼(𝑡𝑡)𝑅𝑅𝑑𝑑

𝑛𝑛

𝑗𝑗=1

𝑑𝑑𝑑𝑑 (6) 

We introduce some notations used frequently later on. 
For two variables 𝐴𝐴  and 𝐵𝐵 , A ≲ B  denotes 𝐴𝐴 ≤ 𝐶𝐶𝐶𝐶  for some positive constant 𝐶𝐶 . A ≳ B 

means A ≲ B. We use 𝐴𝐴 ∼ 𝐵𝐵 to stand for both A ≲ B and B ≲ A. 
A lemma is derived from [3], in order to obtain the convergence rate. 
Lemma 1 Let p: = mfX with |m(x)|<+∞ and f(x)>0. Then m� (x) defined in (4)-(6) satisfies that 

𝑃𝑃[|𝑚𝑚�(𝑥𝑥) −𝑚𝑚(𝑥𝑥)|2 > 𝜀𝜀] ≤ 𝑃𝑃[|𝑝̂𝑝(𝑥𝑥) − 𝑝𝑝(𝑥𝑥)|2 ≳ 𝜀𝜀] + 𝑃𝑃[|𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑥𝑥)|2 ≳ 𝜀𝜀] for 𝜀𝜀 > 0 small enough. 

Theorem 1 For the model (1.1), the estimator m�  in (4) satisfies that if |𝐺𝐺𝛼𝛼(𝑡𝑡)| ≳ (1 + t2)−
𝛽𝛽(𝛼𝛼)
2  

with 𝛽𝛽(𝛼𝛼) = �
𝛽𝛽,𝛼𝛼 = 1

0,𝛼𝛼 ∈ [0,1) and ℎ ∼ 𝑛𝑛−
1

2𝑠𝑠+2𝛽𝛽(𝛼𝛼)+𝑑𝑑. 

lim
𝑐𝑐→∞

lim
𝑛𝑛→∞

𝑠𝑠𝑠𝑠𝑠𝑠𝑃𝑃[|𝑚𝑚�(𝑥𝑥) −𝑚𝑚(𝑥𝑥)|2 ≥ 𝑐𝑐𝑛𝑛−
2𝑠𝑠

2𝑠𝑠+2β(α)+d ] = 0.  

Proof, for 0 < 𝜀𝜀𝑛𝑛 → 0, Lemma 1 and Markov inequality imply that  
𝑠𝑠𝑠𝑠𝑠𝑠𝑃𝑃[|𝑚𝑚�(𝑥𝑥) −𝑚𝑚(𝑥𝑥)|2 ≥ 𝑐𝑐𝜀𝜀𝑛𝑛] ≲ 

(𝑐𝑐𝜀𝜀𝑛𝑛)−1sup �𝐸𝐸�𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑥𝑥)�2 + 𝐸𝐸|𝑝̂𝑝(𝑥𝑥) − 𝑝𝑝(𝑥𝑥)|2� (7) 

In order to estimate 𝐸𝐸|𝑝̂𝑝(𝑥𝑥) − 𝑝𝑝(𝑥𝑥)|2 + 𝐸𝐸�𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑥𝑥)�2, one needs only to deal with the variance 

terms 𝑉𝑉𝑉𝑉𝑉𝑉𝑝̂𝑝(𝑥𝑥),𝑉𝑉𝑉𝑉𝑉𝑉𝑓𝑓(𝑥𝑥) and the bias terms |𝐸𝐸𝑝̂𝑝(𝑥𝑥) − 𝑝𝑝(𝑥𝑥)|2, �𝐸𝐸𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑥𝑥)�2. 

Since 𝑊𝑊1,𝑊𝑊2, . . . ,𝑊𝑊𝑛𝑛 are i.i.d., the variance term 

𝑉𝑉𝑉𝑉𝑉𝑉𝑓𝑓(𝑥𝑥) ≤ (2𝜋𝜋)−2𝑑𝑑𝑛𝑛−1𝐸𝐸 �� 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝐾𝐾𝑓𝑓𝑓𝑓(ℎ𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖𝑊𝑊1/𝐺𝐺𝛼𝛼(𝑡𝑡)
𝑅𝑅𝑑𝑑

𝑑𝑑𝑑𝑑�
2

= (2𝜋𝜋)−2𝑑𝑑𝑛𝑛−1 � �� 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝐾𝐾𝑓𝑓𝑓𝑓(ℎ𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖/𝐺𝐺𝛼𝛼(𝑡𝑡)
𝑅𝑅𝑑𝑑

𝑑𝑑𝑑𝑑�
2

ℎ𝑤𝑤(𝑤𝑤)𝑑𝑑𝑑𝑑
𝑅𝑅𝑑𝑑

. 

By 𝑧𝑧 = 𝑥𝑥 − 𝑤𝑤,𝑉𝑉𝑉𝑉𝑉𝑉𝑓𝑓(𝑥𝑥) ≤ (2𝜋𝜋)−2𝑑𝑑𝑛𝑛−1 , ∫ �∫ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝐾𝐾𝑓𝑓𝑓𝑓(ℎ𝑡𝑡)/𝐺𝐺𝛼𝛼(𝑡𝑡)𝑅𝑅𝑑𝑑 𝑑𝑑𝑑𝑑�2𝑅𝑅𝑑𝑑 ℎ𝑤𝑤(𝑥𝑥 − 𝑧𝑧)𝑑𝑑𝑑𝑑.  By (𝑚𝑚, 𝑓𝑓𝑋𝑋) ∈
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𝜁𝜁𝑥𝑥,𝑠𝑠, ‖𝑓𝑓𝑋𝑋‖∞ ≤ 𝐶𝐶1 and ‖𝑓𝑓𝑋𝑋 ∗ 𝑔𝑔‖∞ ≤ ‖𝑓𝑓𝑋𝑋‖∞‖𝑔𝑔‖1 ≤ 𝐶𝐶1‖𝑔𝑔‖1. Hence, 

𝑉𝑉𝑉𝑉𝑉𝑉𝑓𝑓(𝑥𝑥) ≲ (2𝜋𝜋)−2𝑑𝑑𝑛𝑛−1 � ��
𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝐾𝐾𝑓𝑓𝑓𝑓(ℎ𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖𝑊𝑊1

𝐺𝐺𝛼𝛼(𝑡𝑡)𝑅𝑅𝑑𝑑
𝑑𝑑𝑑𝑑�

2

𝑅𝑅𝑑𝑑
𝑑𝑑𝑑𝑑 (8) 

Moreover, the above inequality becomes to 

𝑉𝑉𝑉𝑉𝑉𝑉𝑓𝑓(𝑥𝑥) ≲ 𝑛𝑛−1 ∫ �𝐾𝐾𝑓𝑓𝑓𝑓(ℎ𝑡𝑡)/𝐺𝐺𝛼𝛼(𝑡𝑡)�2[−1/ℎ,1/ℎ]𝑑𝑑 𝑑𝑑𝑑𝑑 thanks to Parseval identity and supp𝐾𝐾𝑓𝑓𝑓𝑓 ⊂ [−1,1]𝑑𝑑. 

Because |𝐺𝐺𝛼𝛼(𝑡𝑡)| ≳ (1 + t2)−
𝛽𝛽(𝛼𝛼)
2 ,  

𝑉𝑉𝑉𝑉𝑉𝑉𝑓𝑓(𝑥𝑥) ≲ 𝑛𝑛−1ℎ−(2𝛽𝛽(𝛼𝛼)+𝑑𝑑) (9) 
Similar to 𝑉𝑉𝑉𝑉𝑉𝑉𝑓𝑓(𝑥𝑥), one finds that 

𝑉𝑉𝑉𝑉𝑉𝑉𝑝̂𝑝(𝑥𝑥) ≤ (2𝜋𝜋)−2𝑑𝑑𝑛𝑛−1𝐸𝐸 �𝑌𝑌1 � 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝐾𝐾𝑓𝑓𝑓𝑓(ℎ𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖𝑊𝑊1/𝐺𝐺𝛼𝛼(𝑡𝑡)
𝑅𝑅𝑑𝑑

𝑑𝑑𝑑𝑑�
2

 

≤ (2𝜋𝜋)−2𝑑𝑑𝑛𝑛−1 � 𝐸𝐸(|𝑌𝑌1|2|𝑋𝑋1 = 𝑢𝑢) ⋅ 𝐸𝐸 �� 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑥𝑥−𝑢𝑢)𝐾𝐾𝑓𝑓𝑓𝑓(ℎ𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝛿𝛿1/𝐺𝐺𝛼𝛼(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑅𝑅𝑑𝑑

�
𝑅𝑅𝑑𝑑

2

𝑓𝑓𝑋𝑋(𝑢𝑢)𝑑𝑑𝑑𝑑 

≤ (2𝜋𝜋)−2𝑑𝑑𝑛𝑛−1‖𝑓𝑓𝑋𝑋(⋅)𝐸𝐸(|𝑌𝑌1|2|𝑋𝑋1 =⋅)‖∞ ⋅ � 𝐸𝐸 �� 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑥𝑥−𝑢𝑢)𝐾𝐾𝑓𝑓𝑓𝑓(ℎ𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝛿𝛿1/𝐺𝐺𝛼𝛼(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑅𝑅𝑑𝑑

�
𝑅𝑅𝑑𝑑

2

𝑑𝑑𝑑𝑑. 

Obviously, we shall assume that the product of 𝑓𝑓𝑋𝑋 and the conditional expectation of 𝑌𝑌12 given 
𝑋𝑋1 = 𝑥𝑥 is uniformly bounded for all 𝑥𝑥 ∈ 𝑅𝑅. Hence,  

= (2𝜋𝜋)−2𝑑𝑑𝑛𝑛−1‖𝑓𝑓𝑋𝑋(⋅)𝐸𝐸(|𝑌𝑌1|2|𝑋𝑋1 =⋅)‖∞ ⋅ � 𝐸𝐸�𝐾𝐾𝑓𝑓𝑓𝑓(ℎ𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝛿𝛿1/𝐺𝐺𝛼𝛼(𝑡𝑡)�
𝑅𝑅𝑑𝑑

2
𝑑𝑑𝑑𝑑 

= (2𝜋𝜋)−2𝑑𝑑𝑛𝑛−1‖𝑓𝑓𝑋𝑋(⋅)𝐸𝐸(|𝑌𝑌1|2|𝑋𝑋1 =⋅)‖∞ ⋅ � �𝐾𝐾𝑓𝑓𝑓𝑓(ℎ𝑡𝑡)/𝐺𝐺𝛼𝛼(𝑡𝑡)�
𝑅𝑅𝑑𝑑

2
𝑑𝑑𝑑𝑑. 

See [3]. By Parseval identity, this above inequality reduces to 

𝑉𝑉𝑉𝑉𝑉𝑉𝑝̂𝑝(𝑥𝑥) ≲ 𝑛𝑛−1 � �𝐾𝐾𝑓𝑓𝑓𝑓(ℎ𝑡𝑡)/𝐺𝐺𝛼𝛼(𝑡𝑡)�2
𝑅𝑅𝑑𝑑

𝑑𝑑𝑑𝑑. 

The same arguments as (9) lead to 
𝑉𝑉𝑉𝑉𝑉𝑉𝑝̂𝑝(𝑥𝑥) ≲ 𝑛𝑛−1ℎ−(2𝛽𝛽(𝛼𝛼)+𝑑𝑑) (10) 

To estimate the bias terms |𝐸𝐸𝑝̂𝑝(𝑥𝑥) − 𝑝𝑝(𝑥𝑥)|2, �𝐸𝐸𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑥𝑥)�2, one knows by (2.2) that  

𝐸𝐸𝑓𝑓(𝑥𝑥) = (2𝜋𝜋)−𝑑𝑑 � 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝐾𝐾𝑓𝑓𝑓𝑓(ℎ𝑡𝑡)𝐸𝐸(𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖)/𝐺𝐺𝛼𝛼(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑅𝑅𝑑𝑑

= (2𝜋𝜋)−𝑑𝑑 � 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝐾𝐾𝑓𝑓𝑓𝑓(ℎ𝑡𝑡)ℎ𝜔𝜔
𝑓𝑓𝑓𝑓/𝐺𝐺𝛼𝛼(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑅𝑅𝑑𝑑

= (2𝜋𝜋)−𝑑𝑑 � 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝐾𝐾𝑓𝑓𝑓𝑓(ℎ𝑡𝑡)𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑅𝑅𝑑𝑑

 

Due to the inverse Fourier transform theorem, 𝐸𝐸𝑓𝑓(𝑥𝑥) = 𝑓𝑓𝑋𝑋 ∗ 𝐾𝐾ℎ(𝑥𝑥). Similar to 𝐸𝐸𝑓𝑓(𝑥𝑥),𝐸𝐸𝑝̂𝑝(𝑥𝑥) = 𝑝𝑝 ∗

𝐾𝐾ℎ(𝑥𝑥). According to [4], 𝐸𝐸|𝑝̂𝑝(𝑥𝑥) − 𝑝𝑝(𝑥𝑥)|2 ≲ ℎ2s , 𝐸𝐸�𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑥𝑥)�2 ≲ ℎ2s . Therefore, recombining the 

conclusions of (9) and (10). 

𝑉𝑉𝑉𝑉𝑉𝑉𝑓𝑓(𝑥𝑥) + �𝐸𝐸𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑥𝑥)�2 + 𝑉𝑉𝑉𝑉𝑉𝑉𝑝̂𝑝(𝑥𝑥) + |𝐸𝐸𝑝̂𝑝(𝑥𝑥) − 𝑝𝑝(𝑥𝑥)|2 ≲ 𝑛𝑛−1ℎ−(2𝛽𝛽(𝛼𝛼)+𝑑𝑑) + ℎ2s 

thanks to |𝐺𝐺𝛼𝛼(𝑡𝑡)| ≳ (1 + t2)−
𝛽𝛽(𝛼𝛼)
2 . Then it follows from the choices of ℎ in Theorem 1 that  

𝑉𝑉𝑉𝑉𝑉𝑉𝑓𝑓(𝑥𝑥) + �𝐸𝐸𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑥𝑥)�2 + 𝑉𝑉𝑉𝑉𝑉𝑉𝑝̂𝑝(𝑥𝑥) + |𝐸𝐸𝑝̂𝑝(𝑥𝑥) − 𝑝𝑝(𝑥𝑥)|2 ≲ 𝜀𝜀𝑛𝑛 

where 𝜀𝜀𝑛𝑛 = 𝑛𝑛−
1

2𝑠𝑠+2𝛽𝛽(𝛼𝛼)+𝑑𝑑 for the case. 
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Furthermore, �𝐸𝐸𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑥𝑥)�2 + |𝐸𝐸𝑝̂𝑝(𝑥𝑥) − 𝑝𝑝(𝑥𝑥)|2 ≲ 𝜀𝜀𝑛𝑛. This with (2.4) leads to 

lim
𝑐𝑐→∞

lim
𝑛𝑛→∞

𝑠𝑠𝑠𝑠𝑠𝑠𝑃𝑃[|𝑚𝑚�(𝑥𝑥) −𝑚𝑚(𝑥𝑥)|2 ≥ 𝑐𝑐𝑛𝑛−
2𝑠𝑠

2𝑠𝑠+2β(α)+d ] ≲  (𝑐𝑐𝜀𝜀𝑛𝑛)−1𝜀𝜀𝑛𝑛 = 𝑐𝑐−1 

Finally, the desired conclusion is proved. 
 

4. Conclusion 
In this paper, we study the regression estimation with generalized additive noise, which includes 

the classical regression estimation and regression estimation with additive noise. Based on the 
generalized additive noise model, we build a regression estimator and study it's convergence rate. It’s 
the convergence rate of the estimator with generalized additive noise is 𝑛𝑛−1ℎ−(2𝛽𝛽(𝛼𝛼)+𝑑𝑑) + ℎ2𝑠𝑠. Clearly, 
when 𝛼𝛼 represent different value, Theorem 1 can be reduced to Guo [4] and Politis [15] respectively. 
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