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Abstract: In this paper, we study the regression estimation with generalized additive noise,
which includes the classical regression estimation and regression estimation with additive noise.
Based on the generalized additive noise model, we build a regression estimator and study it's

convergence rate.
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1. Introduction

Nonparametric regression models play an important role in medical statistics and economic
statistics. Caron [1] examined the problem of estimating heterogeneous treatment effects using
non-parametric regression-based methods, starting from an empirical study aimed at investigating
the effect of participation in school meal programs on health indicators. Almanjahie [2] proposed a
family of robust nonparametric estimators with unknown scale parameters for regression function
based on the kernel method. The superiority of the proposed methods was shown through numerical

and real data studies.

2. Construction of Kernel-Based Estimators for the Generalized Additive Noise Model

The goal of this paper is to estimate a regression function m from independent and identically

distributed (i.i.d) data (W;,Y;)(j = 1,2,...,n) generated by the model
Y=mX)+eW=X+B-8§ 1)
where X stands for a real-valued random variable with unknown probability density

f on R%, § denotes an independent random noise with the probability density g and ¢ € {0,1}
Bernoulli random variable with P(B =1) = a, a € [0,1].

When a =1, (1.1) reduces to the deconvolution model. For the study of errors-in-variables,
Meister [3] studied regression estimation with one-dimensional data through kernel method. Guo [4]
et al. extended Meister’s theorems and studied the optimal convergence rate of the estimator with
additive noise.

While @ =0, (1.1) corresponds to the traditional regression model. Bouzebda [5] studied the
bandwidth consistency of the kernel-type estimator in the case of weaker

kernel conditions and extended existing uniform bounds on kernel regression estimator. Pinelis
[6] considered three common classes of kernel regression estimators and proved related properties.
Ail [7] proposed a new improvement of the Nadaraya-Watson kernel nonparametric regression
estimator. The bandwidth of this new improvement was obtained depending on the three different
statistical indicators. Including comparisons with four others kernel estimators. The proposed

estimator in the case of harmonic mean is more accurate than all classical methods.
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Research on kernel methods, Chu et al. [8] proposed five point-wise consistent and asymptotic
normal estimators of the asymptotic variance function of the Nadaraya-Watson kernel estimator for
nonparametric regression. Cleanthous [9] considered the density estimation problem of observations
taking values in classical or non-classical spaces. Kernel and linear and nonlinear wavelet density
estimators are studied. The convergence rates of these estimators are established and discussed.

In the study of wavelet estimation, Chesneau et al. [10] studied the estimation problem in a class
of nonparametric regression models with multiplicative and additive noise. In this context, two kinds
of wavelet estimation are proposed. And it is proved that they have faster convergence speed in
Besov space. Kou et al. [11] studied a class of generalized nonparametric regression estimation
models with multiplicative noise. And they proved the convergence rates of these regression
estimators under point-wise error in Besov space.

The above scholars have studied the classical regression estimation and regression estimation
with additive noise. In fact, the presence of noise within the data remains uncertain. Therefore,
generalized additive noise model is introduced for the regression estimation. It can reduce to classical
regression estimation as well as regression estimation with additive noise. More references are in
[12-15].

Clearly, the density h,, of W in (1) satisfies

hy =0 —-a)f +afxg (2)
because P{W <t} =P{B=0}P{X+B-68|p=o <t}+P{B=1}P{X+B-5|p=y <t} =(1-
a)P{X < t} + aP{X + § < t}. Furthermore,
when the function
e = [ — @) + ag”t (O] hl (0: = G (OR) (©)
Ge(t) =1—a+ag’t(t)

has nonzeros on R?, where f/! is the Fourier transform of f € L'(R%) defined by
fre):= f f(x)e™dx
R

To estimate the regression function, we need the assumption of function space as in [4].
Crs = {(m'fx)lnf)(”w + Im*fylleo < Cr,mfy € LRY); fr(x) 2 Czi} (3)
fx and mfy satisfy local Holder condition of order s at x € R* for some positive constants
C;,C, > 0. A function f is said to satisfy local Holder condition of orders, if there exists a constant
C > 0 such that for each g with |B]| = |s].
|08f () — 08 f ()] < Cly — 21" Wlfory, z € Q(x,7)
where Q(x,r):={y = Vi, V2 -, Y)|Vi € 0 — 7, x; +1),i = 1,2,...,d} with r > 0.

In the second section of the article, we estimate the regression function of generalized additive

S
noise model through kernel method. We demonstrate the convergence rate n 2s+28(@+d of the

estimator with generalized additive noise.

3. The Convergence Rate of Regression Estimator with Generalized Additive Noise
This section aims to give a convergence rate of regression estimators #(x) for the function m in
model (1).
To introduce our regression estimator, we firstly choose a kernel function K(x) satisfying
(DK € L*(RY) n L*(RY) and suppK’'t c [-1,1]¢
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(i) dK(x)xV dx = 8y for ly| =0,1,...,n
R
(iii)f K(x)|x|® dx < oo.
R4

Defining Kj(x) = %K (%). Then, our regression estimator with generalized additive noise i is

built as
where
o I 1 e~ U KT (pt)eitw]
“”‘EZ;MVLd o~ ®

1

pe) =~

v 1 f e—ithft(ht)eitwj
T (2m)? Jza G (1)

NgE

(6)

j=1
We introduce some notations used frequently later on.
For two variables A and B, A< B denotes A < (B for some positive constant C. A= B
means A S B. Weuse A ~ B tostand for both A< B and B S A
A lemma is derived from [3], in order to obtain the convergence rate.
Lemma 1 Let p:=mfy with [m(x)|<tec and f(x)>0. Then m(x) defined in (4)-(6) satisfies that
P[|(x) — m(x)|? > €] < P[|p(x) — p(x)|? = €] + P[|f (x) — f(x)|?> = €] for & > 0 small enough.

B(@®)
Theorem 1 For the model (1.1), the estimator M in (4) satisfies that if |G,(t)| = (1 +t?)” 2z

ya=1 . S
Wlth B(a) = {Oﬁacé [0 1) and h ~n 2st2p(a)+d,

2s
lim lim supP[|(x) — m(x)|* = cn 25+2B(@+d] = Q.
C—00 N>

Proof, for 0 < &, - 0, Lemma 1 and Markov inequality imply that

supP[|m(x) — m(x)|? = ce,] S

N 2 .
(ce) sup {E|f(x) = fOOI* + Elp(x) — p() 1} )
In order to estimate E|p(x) —p(x)|* +E | fo)—f (x)|2, one needs only to deal with the variance

terms Varp(x),Varf(x) and the bias terms |Ep(x) — p(x)|?, |Ef(x) — f(x)|2.

Since W;,W,,..., W, arei.i.d., the variance term
2

Varf(x) < (2m)~2%n"'E

f e~ KTE (h)eitW1 /G, (b) dt
Rd

2

= (Zﬂ)_Zdn_lf h,, (W)dw.

RrRd

f e KTt (ht)eit™ /G, (t) dt
Rd

By z=x—-wVarf(x) < (2n)™2*n™", [ 4|[.ae K/ (ht) /G, (1) dt|2 h,(x —z)dz. By (m,fy)€
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Cosr Ifxllo = €1 and Ifx * glle < lfxllollglls < Gillglly- Hence,
e—ithft(ht)eitwl
Ld Ga(t)

dt| dz (8)

Varf(x) s (2n)‘2dn‘1f

):
Moreover, the above inequality becomes to

Varf(x) s n™? f[_ ]d|Kff(ht)/Ga(t)|2 dt thanks to Parseval identity and suppk/* ¢ [-1,1]%.

1/h,1/h

_B@
Because |G,(t)|= (1+t2) =z,

Varf(x) s n"th-@F@+d) 9)

Similar to Varf(x), one finds that
2

Varp(x) < (2m)"%%n~1E

Y, f e~ KTt (ht)eltW1 /G, (t) dt
): 3

2

< (2n)‘2dn‘1f fr(Wdu

E(IV,1%1X, =u) - E
rd

f e_it(x_u)Kft(ht)eita61/Ga(t)dt
R4

2

du.

< @m) 2 Y| (EQY 21X, =)llen - f E

R

f e_it(x_u)Kft(ht)eitath/Ga(t)dt
):

Obviously, we shall assume that the product of fy and the conditional expectation of Y? given

X, = x is uniformly bounded for all x € R. Hence,

2
= 2m) I OENI?1X, =')|Iw-de|Kft(ht)€““‘31/Ga(t)| dt

R
2
= @0 ORI, =)l [ [KIEh0/Go()] d.
R
See [3]. By Parseval identity, this above inequality reduces to
Varp(x) s n! f K7t (ht) /G, (0| d.
R4

The same arguments as (9) lead to
Varp(x) S n"th~GE@+d (10)

To estimate the bias terms |Ep(x) — p(x)]?, |E Fx) = f(x) |2, one knows by (2.2) that

Ef(x) = (2m)~¢ f e X KTt (RE)E (e49) /G, (t)dt = (2m)~¢ f de—itXKft(ht)h{f/Ga(t)dt

R4 R
= (2n)‘dJ-de‘”xl(ff(ht)fff(t)dt
R
Due to the inverse Fourier transform theorem, Ef(x) = fy * K, (x). Similar to Ef(x), Ep(x) = p *
Ky(x). According to [4], EIp(x) —p(x)I? s h*, E|f(x) - f (x)|2 S h*S. Therefore, recombining the
conclusions of (9) and (10).

Varf(x) + [Ef(x) = f@)|* + Varp(x) + [Ep(x) — p(x)|2 S n~Lh-@B@+d) 4 p2s
B(@®)
thanks to |G, ()] = (1 +t*)” 2 . Then it follows from the choices of h in Theorem 1 that
R A 2 . A
Varf(x) + |Ef () = fO|” + Varp(x) + [Ep(x) = p(0)I* S &,

1
where &, = n 2s+28@+d for the case.
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Furthermore, |E fo)—f (x)|2 + |[EP(x) — p(x)|* S &,. This with (2.4) leads to

2s
lim lim supP[|M(x) — m(x)|? = cn 25+2B(0+d] 5 (ce,) " te, = ¢t

C—>00 n—0o

Finally, the desired conclusion is proved.

4. Conclusion

In this paper, we study the regression estimation with generalized additive noise, which includes
the classical regression estimation and regression estimation with additive noise. Based on the
generalized additive noise model, we build a regression estimator and study it's convergence rate. It’s
the convergence rate of the estimator with generalized additive noise is n~th~(F@*+d) 4 p2s Clearly,

when «a represent different value, Theorem 1 can be reduced to Guo [4] and Politis [15] respectively.
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