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Abstract: Effective university–industry collaboration remains challenging, primarily because 
companies, particularly small and medium-sized enterprises (SMEs), often struggle to clearly 
articulate their multi-dimensional technological requirements and accurately identify 
trustworthy academic experts aligned with these needs. To address these critical issues, we 
introduce DualRAG-SNR, a novel hierarchical matching framework explicitly designed to 
resolve semantic ambiguities and integrate trust signals. DualRAG-SNR incorporates (i) a 
dual-stage retrieval-augmented generation (DualRAG) mechanism, comprising a typed 
Graph-based retrieval (GraphRAG) followed by a precise Vector Database (VDB) retrieval, 
explicitly clarifying multi-aspect corporate requirements and retrieving semantically coherent 
knowledge; and (ii) an enriched Social Network Ranker (SNR) explicitly constructed from 
citation data, institutional affiliations, and fine-grained company–scholar interactions logged on 
the Online Technology Trading Platform (OTTP), capturing exploratory interactions such as 
profile views, communication exchanges, and contractual activities. RotatE embeddings 
explicitly model relational trust within this enriched social network. We further aggregate 
retrieved insights into a unified hypothetical requirement document (HyDE) using a large 
language model (LLM), explicitly enhancing semantic clarity. Through requirement-aware 
attention-based fusion, DualRAG-SNR dynamically balances semantic relevance and relational 
trust, significantly improving scholar recommendations. Empirical evaluation on real-world 
OTTP collaboration cases demonstrates that DualRAG-SNR achieves superior recall and nDCG 
compared to strong baselines. Furthermore, an interaction-based evaluation explicitly indicates 
that DualRAG-SNR recommendations elicit deeper and more sustained company–scholar 
interactions, explicitly signaling enhanced trust-building and more effective knowledge transfer. 
Ablation studies explicitly confirm that the hierarchical DualRAG retrieval, enriched exploratory 
interactions, and requirement-aware fusion contribute substantial complementary 
improvements. The proposed framework explicitly provides both theoretical insights and 
practical tools for systematically reducing information asymmetry and fostering robust 
knowledge transfer in university–industry partnerships. 
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1. Introduction 

In the paradigm of Open Innovation, the porosity of organizational boundaries has necessitated 
a shift from internal R&D to external knowledge acquisition. For Small and Medium-sized 
Enterprises (SMEs), University-Industry Collaboration (UIC) represents a critical conduit for 
assimilating cutting-edge technologies and sustaining competitive advantage [2]. Conversely, for 
academic institutions, the commercialization of research is increasingly mandated as a mechanism to 
demonstrate societal impact. Despite these reciprocal incentives, the "market for technology" remains 
highly inefficient. A pervasive "Valley of Death" separates theoretical innovation from industrial 
application, characterized by high search costs and low success rates in partner identification [3].  

The impediments to effective UIC are rooted in two fundamental dimensions: cognitive 
heterogeneity and relational opacity. First, the cognitive gap arises from the linguistic mismatch 
between the two communities [4]. Academic discourse is structured around theoretical rigor and 
domain-specific taxonomies, whereas industrial requirements are often articulated through 
problem-oriented, colloquial, or ambiguous descriptions. Traditional keyword-based Information 
Retrieval (IR) systems fail to bridge this semantic chasm, as they lack the inferential capability to map 
a vague industrial "need" to a precise academic "solution." Second, the relational gap stems from the 
severe information asymmetry regarding scholar reliability. Unlike commodity transactions, 
knowledge transfer is deeply embedded in social trust [17]. SMEs lack verifiable signals to assess a 
scholar's practical capability (ex-ante trust), and scholars lack mechanisms to signal their industrial 
relevance. Without a robust trust-modeling mechanism, the transaction costs associated with 
initiating collaboration remain prohibitively high. 

Recent advancements in Generative Artificial Intelligence (GenAI), particularly Large Language 
Models (LLMs), offer a nascent opportunity to act as intelligent intermediaries. However, the direct 
application of off-the-shelf LLMs to the UIC context is fraught with challenges. Standard 
Retrieval-Augmented Generation (RAG) approaches often retrieve fragmented information, failing to 
capture the structural logic (e.g., the applicability of a specific method to a specific scenario) inherent 
in scientific literature [10]. Furthermore, LLMs are prone to "hallucinations," generating plausible but 
factually incorrect recommendations, which is detrimental in high-stakes B2B decision-making [9]. 
More critically, existing recommender systems predominantly focus on relevance (content matching) 
while neglecting reputation (trust modeling), thereby failing to address the "cold start" problem 
inherent in forming new social ties. 

Recent advancements in Large Language Model (LLM)-based agents have led to the proliferation 
of personalized AI assistants, which greatly facilitate communication by accessing extensive personal 
data and engaging in interactions that substantially reduce communication overhead and enhance 
trust on digital platforms [8]. Similar pre-collaboration communication approaches have emerged in 
various professional domains to alleviate information asymmetry. For instance, in medical contexts, 
personalized AI assistants provide preliminary patient information and histories before formal doctor 
consultations, establishing initial trust and streamlining the medical consultation process [5]. 
However, despite evident success in other professional domains, such pre-collaboration AI 
mechanisms remain underdeveloped within university-industry collaborations. This gap persists 
primarily because (1) SMEs often articulate their technical demands in a vague, multi-faceted, and 
coarse-grained manner, making conventional keyword-based retrieval insufficient due to ambiguous 
or overly broad results from LLMs; (2) traditional academic outputs (papers or patents alone) 
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inadequately reflect practical applicability or contextual details required by industry; and (3) direct 
trust-building remains difficult, given limited historical interactions and academic researchers’ time 
constraints. 

To directly address these unresolved challenges, we propose a novel intelligent matching 
framework—DualRAG-SNR—comprising two complementary modules designed explicitly to 
enhance matching accuracy, clarity of requirements, trust-building, and overall knowledge transfer 
efficiency. To effectively interpret companies’ multi-aspect and often ambiguous requirements, our 
DualRAG retrieval mechanism operates in two distinct yet complementary stages. Initially, a typed 
GraphRAG approach systematically aligns entities across separate dimensions—Technology, Method, 
and Application—allowing precise extraction and integration of cross-document information [16]. By 
explicitly encoding these dimensions, GraphRAG enables targeted retrieval and coherent 
contextualization of information distributed across multiple documents, significantly reducing 
ambiguity and ensuring comprehensive semantic coverage. Subsequently, the Vector DataBase 
(VDB)-based retrieval stage independently retrieves relevant, detailed textual evidence for each 
decomposed aspect without sacrificing broader contextual information. This separation ensures that 
each single-aspect query benefits from highly specific knowledge while maintaining consistency with 
the overall multi-dimensional context. Collectively, this hierarchical retrieval process substantially 
clarifies complex industry requirements, reduces information fragmentation, and ultimately enhances 
the interpretability and precision of scholar recommendations. 

Nevertheless, addressing information clarity alone is insufficient without considering relational 
trust and credibility. Existing literature frequently neglects explicit modeling of trust derived from 
real-world interactions, thus limiting the practical effectiveness of scholar recommendations. To 
overcome this limitation, we incorporate a sophisticated Social-Network Ranker (SNR). Specifically, 
SNR constructs an enriched heterogeneous social network, integrating historical human–digital 
scholar interactions—such as profile views, communication exchanges, and contract activities 
recorded by the platform—to explicitly quantify evolving relational trust. Additionally, SNR includes 
scholars' bibliometric quality indicators (e.g., citations, h-index) and institutional rankings to reflect 
academic reputation and reliability objectively. By embedding this enriched social graph using 
relational embedding techniques (RotatE) [23], SNR effectively incorporates connection strength, 
academic quality, and historical trust signals, significantly reducing information asymmetry related to 
credibility. 

To empirically validate the DualRAG-SNR framework, we utilize a comprehensive real-world 
dataset from the Jiangxi Online Technology Trading Platform (OTTP), encompassing 1,700 
technology transfer interactions between SMEs and academic scholars. Our evaluation consists of 
both offline and online analyses. Specifically, offline experiments benchmark DualRAG-SNR against 
leading baselines across critical metrics such as recall, normalized Discounted Cumulative Gain 
(nDCG), and Mean Reciprocal Rank (MRR). Further, leveraging detailed historical company–digital 
scholar interaction logs (such as communication frequency, depth, and speed of knowledge transfer), 
we introduce innovative interaction-based metrics to quantify recommendation efficiency and 
knowledge transfer efficacy. These interaction-based evaluations uniquely highlight our framework's 
capacity to streamline communication, enhance mutual trust, and expedite effective collaboration, 
demonstrating measurable superiority compared to traditional recommendation methodologies.  

Our study makes several critical contributions: (1) We propose a novel Digital Scholar 
Agent-based recommendation framework explicitly addressing information asymmetry and 
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trust-building issues in academia-industry collaborations. (2) Methodologically, we introduce an 
innovative DualRAG method that accurately extracts and integrates multimodal knowledge, 
overcoming traditional keyword extraction limitations and hallucination problems associated with 
LLM-based methods. (3) Practically, our integrated social network-enhanced recommendation system 
DualRAG-SNR significantly improves SMEs’ ability to identify suitable academic collaborators, 
fostering effective knowledge transfer and commercialization of academic research outcomes. 

2 LITERATURE REVIEW 
2.1 Automatic Text Matching 
Text matching, a fundamental task in natural language processing (NLP), aims at accurately 

evaluating semantic and lexical similarity between textual elements for various applications, 
including information retrieval, recommendation systems, and question answering [25, 27]. 
Traditional text matching techniques heavily depended on lexical similarity, leveraging statistical 
approaches like TF-IDF, cosine similarity, and probabilistic models such as BM25 [7, 15]. While these 
early approaches effectively captured superficial term frequencies, they struggled significantly with 
deeper semantic nuances and contextual variations, leading to mismatches, especially when matching 
texts from differing semantic contexts. 

The advent of semantic embedding approaches enabled text comparisons based on deeper 
semantic similarity rather than mere lexical overlap. Techniques such as Subject-Action-Object (SAO) 
and Function-Object-Property (FOP) further enhanced semantic understanding by explicitly 
extracting structured semantic components [24]. Deep learning models, including convolutional 
neural networks (CNN), Long Short-Term Memory networks (LSTM), and transformer-based models 
like BERT, refined this capability further by capturing rich contextual and semantic relationships 
within text pairs [14, 19]. 

Integrating external knowledge from knowledge graphs (KGs) significantly enhanced text 
matching performance by embedding explicit semantic entities and relationships [22, 25]. Huang et al. 
(2020), for instance, developed a knowledge-enhanced attention network that leveraged structured 
knowledge from KGs to improve semantic accuracy in text matching tasks. Recent advances in 
Retrieval-Augmented Generation (RAG) techniques have further improved semantic matching 
capabilities by explicitly retrieving relevant external knowledge before generating responses. Models 
like STMAP introduced embedding augmentation to enhance robustness and accuracy in semantic 
matching tasks [26].  

Despite these advances, current methods typically presume a shared semantic space, 
inadequately addressing the distinct semantic contexts common in specialized applications such as 
academia-industry collaborations [13]. The cognitive gap between industry requirements, often 
broadly articulated in colloquial business terms, and the highly specialized academic discourse 
necessitates methods specifically designed to bridge these distinct semantic domains. 

To explicitly address this critical gap, our research introduces the DualRAG-SNR framework. 
Unlike traditional approaches, DualRAG-SNR employs a hierarchical retrieval mechanism combining 
typed GraphRAG and a VDB approach. By retrieving context from structured knowledge graphs, our 
approach significantly reduces semantic mismatches, providing companies with intuitive, accurate, 
and easily understandable domain-specific knowledge. Further integrating these refined semantic 
representations with social network data, our framework ensures precise recommendations of digital 
scholar agents to SMEs, effectively bridging semantic discrepancies and fostering meaningful 
academia-industry collaborations. 
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2.2 Trust-building in Academia-Industry Collaboration 
Establishing trust between academia and industry has traditionally relied on several mechanisms 

[20]. Prior collaborative experiences are fundamental; companies with a history of successful 
collaboration tend to build stronger inter-organizational trust and benefit more from subsequent 
partnerships. Studies indicate that past collaborations significantly reduce cultural and organizational 
barriers, thereby facilitating future engagements and improving outcomes such as innovation 
performance [6]. The presence of “champions” or boundary spanners—individuals who actively 
bridge academic and industry sectors—also plays a crucial role in aligning mutual expectations, 
enhancing communication, and fostering a trustworthy collaboration environment. Furthermore, 
relational social capital, characterized by repeated interactions, personal ties, and goodwill, forms a 
solid foundation for effective knowledge sharing and trust development. Research emphasizes the 
importance of shared goals, mutual understanding, and cultural alignment to overcome differences in 
expectations and operational norms between academia and industry [1]. 

Social network-based recommendation systems have capitalized on relational insights to 
facilitate academia-industry connections [11]. Leveraging existing interpersonal relationships and 
collaboration histories, these systems improve matching accuracy and enhance trust by identifying 
experts who are socially proximate or have prior engagement with potential industry partners. 
However, such approaches often overlook the fundamental semantic gap between market-driven 
business requirements and specialized academic discourse, potentially leading to suboptimal 
matches. 

In recent years, the emergence of AI-driven digital agents has transformed knowledge transfer 
and communication processes in various professional contexts. Digital agents, such as chatbots and 
personalized virtual assistants, proactively reduce information asymmetry by transparently 
explaining their recommendations and disclosing relevant information. Empirical studies 
demonstrate that transparency and clarity in agent communication significantly mitigate user 
uncertainty, enhancing trust and acceptance. For instance, digital agents in e-commerce settings have 
effectively informed customers about detailed product features, fees, and conditions, which 
customers might not proactively inquire about, thus aligning expectations and reducing 
informational gaps [8]. 

However, such digital agent mechanisms have not yet been widely explored within 
academia-industry collaboration scenarios, despite their potential advantages. Our novel 
DualRAG-SNR framework utilizes structured knowledge graphs to precisely interpret and bridge 
distinct semantic contexts, enhancing the accuracy of keyword extraction and semantic 
understanding. By explicitly incorporating transparency and intuitive explanations of 
recommendations, our digital scholar agent-based approach significantly reduces the complexity and 
cost associated with human-mediated communication. This advancement not only bridges the 
existing semantic and informational gaps but also fosters a foundation of trust crucial for successful 
long-term collaboration. Ultimately, our research represents the first attempt to systematically 
leverage digital scholar agents combined with social networks and structured semantic matching to 
facilitate more informed, trust-enhancing, and efficient academia-industry partnerships. 

3 METHODOLOGY 
This section describes our end‑to‑end pipeline, beginning with the construction of a GraphRAG 

and VDB from scholarly publications and historical patents, and culminating in a requirement‑aware 
matching algorithm that ranks Digital Scholar Agents (DSAs) for each corporate query. 
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3.1 Problem Definition and Framework Overview 
Our primary goal is to facilitate effective matching between broadly articulated corporate 

technical requirements and specialized academic researchers (Digital Scholars). Specifically, given a 
company's textual requirement q, we aim to accurately retrieve and recommend the most relevant 
Digital Scholars from an extensive candidate set S, by bridging the inherent semantic gap and 
informational asymmetry between industry and academia.  

To address this challenge, we introduce DualRAG-SNR (Dual Retrieval-Augmented Generation 
and Social-Network Ranker), a novel hierarchical recommendation framework. DualRAG-SNR 
explicitly targets two critical limitations of existing methods: (1) traditional retrieval methods 
inadequately handle multi-aspect and ambiguous company requirements, resulting in semantic 
mismatches; and (2) conventional approaches fail to explicitly incorporate relational trust and 
credibility signals derived from historical interactions between companies and scholars. 

The proposed framework comprises two core modules: 
• DualRAG: a hierarchical retrieval mechanism designed to address the complexity and 

ambiguity of corporate requirements through two sequential retrieval stages: a typed GraphRAG 
stage followed by a VDB retrieval stage. DualRAG systematically extracts structured and 
semantically precise knowledge, accurately decomposing complex, multi-aspect demands into 
well-defined, single-aspect sub-queries. 

• Social-Network Ranker (SNR): an enriched social network module that explicitly 
incorporates trust and quality signals through embedding historical company-scholar interactions, 
bibliometric scholar quality metrics, and institutional rankings. This module ensures recommendation 
credibility by effectively capturing relational trust, quality, and connection. 

We show our framework in Figure 1. Through integrating DualRAG and SNR modules, the 
proposed DualRAG-SNR framework effectively bridges semantic and trust-related gaps, enhancing 
recommendation precision, interpretability, and trustworthiness. 
 
3.2 DualRAG 

𝜋𝜋𝑞𝑞(𝑣𝑣) =
𝒛𝒛𝑞𝑞 ⋅ 𝒛𝒛𝑣𝑣

��𝒛𝒛𝑞𝑞�� , �|𝒛𝒛𝑣𝑣|�
(1) 

 

𝒅𝒅𝑢𝑢 denotes node degree normalization, and 𝑤𝑤𝑢𝑢𝑢𝑢
�type� is calculated as: 

𝑤𝑤𝑢𝑢𝑢𝑢
�type� = � 1, if type(𝑢𝑢) = type(𝑣𝑣)

𝛾𝛾,   if type(𝑢𝑢) ≠ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑣𝑣) (2) 

The parameter γ explicitly penalizes semantic coherence scores for cross-type edges, thus 
encouraging propagation within the same semantic dimension, thereby enhancing interpretability 
and semantic precision. We retain the top-ranked entities and their associated contextually-rich 
descriptions, thereby effectively clarifying complex multi-dimensional corporate requirements, 
substantially improving semantic interpretability and precision for subsequent recommendation 
steps. 
 
3.2.1 Multi-Aspect Requirement Decomposition 

Corporate technical requirements often implicitly combine multiple distinct aspects—such as 
desired technologies, methodologies, or application scenarios—in a single textual description, 
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hindering accurate semantic matching. To systematically address this ambiguity, we introduce a 
Multi-Aspect Requirement Decomposition process. This process leverages the structured outputs 
retrieved from GraphRAG and employs STIGPT to explicitly decompose each original corporate 
requirement into clearly defined, single-aspect sub-queries. 

Specifically, we concatenate the original requirement text 𝑞𝑞 and the top-ranked entities and 
relations extracted via GraphRAG into a structured prompt designed explicitly to guide the LLM 
towards clear multi-aspect decomposition. The structured prompt used is as follows: 

 
Prompt 1. 
Given the following corporate requirement text and associated entities extracted through GraphRAG 
retrieval: 
 
Requirement Text: 
{original requirement text} 
 
Retrieved Entities and Relationships: 
- Technology: {list of relevant technology entities} 
- Method: {list of relevant method entities} 
- Application: {list of relevant application entities} 
 
Please carefully analyze the requirement and decompose it into distinct sub-requirements, each 
clearly addressing only one semantic aspect (Technology, Method, or Application). Present your 
decomposition as a numbered list, clearly indicating the aspect each sub-requirement corresponds to. 
 
Example format: 
1. [Technology]: description of the technology-related aspect of the requirement. 
2. [Method]: description of the method-related aspect of the requirement. 
3. [Application]: description of the application-related aspect of the requirement. 

 
The LLM generates N decomposed single-aspect queries {𝑞𝑞(1), 𝑞𝑞(2), … , 𝑞𝑞(𝑁𝑁)} , explicitly marked 

by their semantic types.  
 
3.2.2 VDB Construction and Retrieval 
3.2.2.1 VDB Construction 

Following GraphRAG retrieval, we construct a robust VDB using content extracted from 
scholarly articles, conference papers, and patents. The construction process explicitly follows three 
main steps to ensure semantic precision and efficient retrieval: 
1. Document Aggregation and Chunking: First, we collect a corpus comprising (i) full texts of 

peer-reviewed journal articles, preprints, and conference proceedings authored by candidate 
scholars, and (ii) detailed patent documents previously filed by companies on the OTTP. Each 
collected document is segmented into overlapping textual chunks of approximately 512 tokens 
each, consistent with typical LLM embedding contexts. Overlapping chunks ensure contextual 
continuity, allowing accurate semantic representation without losing essential information at 
chunk boundaries. 
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2. Semantic Embedding of Textual Chunks: Subsequently, each 512-token textual chunk undergoes 
semantic embedding using Chinese-BERT, selected for its strong performance in domain-specific 
language tasks. Specifically, for each textual chunk 𝒄𝒄𝑗𝑗, we generate a corresponding embedding 
vector 𝒛𝒛𝑐𝑐𝑗𝑗 . These embedding vectors comprehensively encode the semantic content of individual 
chunks, capturing precise and rich contextual information. 

3. Vector Database Indexing and Storage: All embedding vectors {𝒛𝒛𝑐𝑐𝑗𝑗} are efficiently stored and 
indexed using the FAISS library, optimized for high-dimensional similarity retrieval tasks. FAISS 
ensures rapid and accurate retrieval, supporting scalable similarity searches across an extensive 
academic-industrial knowledge corpus. 
The resulting VDB thus explicitly maintains a high-precision semantic representation of scholarly 

and patent-derived knowledge, enabling accurate and context-rich semantic retrieval in subsequent 
recommendation steps. 
 
3.2.2.2 Aspect-Specific VDB Retrieval 

Following Multi-Aspect Requirement Decomposition (Section 3.2.2), each decomposed 
single-aspect query 𝑞𝑞(𝑖𝑖) explicitly corresponds to a distinct semantic dimension (Technology, Method, 
or Application) of the original requirement. Each single-aspect query is independently encoded into 
an embedding vector 𝒛𝒛𝑞𝑞(𝑖𝑖)  using Chinese-BERT. For each aspect-specific embedding 𝒛𝒛𝑞𝑞(𝑖𝑖) , we 
perform an independent retrieval query against our constructed Vector Database. We calculate the 
semantic similarity score between the single-aspect query embedding 𝒛𝒛𝑞𝑞(𝑖𝑖) and each stored textual 
chunk embedding 𝒛𝒛𝑐𝑐𝑗𝑗  as follows: 

Similarity�𝑞𝑞(𝑖𝑖), 𝑐𝑐𝑗𝑗� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝑧𝑧𝑞𝑞(𝑖𝑖), 𝑧𝑧𝑐𝑐𝑗𝑗� (3) 

We then retrieve the top-ranked 10 textual chunks {𝑐𝑐𝑗𝑗
(1), 𝑐𝑐𝑗𝑗

(2), … , 𝑐𝑐𝑗𝑗
(10)} for each single-aspect 

query based on their semantic similarity scores. Retrieving exactly 10 textual chunks per aspect 
ensures balanced semantic coverage, maintaining precision while avoiding information overload. 

This hierarchical retrieval approach—structured first by GraphRAG and refined via 
VDB—systematically ensures precise, detailed, and semantically coherent knowledge matching for 
each distinct semantic aspect of corporate technical requirements, significantly enhancing subsequent 
recommendation accuracy and interpretability. 
 
3.2.3 HyDE Construction 

To further resolve ambiguities inherent in the original corporate requirement texts and to 
comprehensively integrate the fine-grained semantic information retrieved from the previous VDB 
step, we employ a structured HyDE construction process. HyDE generates a unified and semantically 
coherent pseudo-requirement document that synthesizes detailed insights derived from the 
individual single-aspect retrieval queries. 

For each decomposed single-aspect query 𝑞𝑞(𝑖𝑖) , along with its 10 retrieved textual chunks 
obtained from the VDB, we employ STIGPT as a judgement generator. Specifically, the LLM 
processes each aspect separately with the following structured prompt: 

 
Prompt 2. 
Given the following single-aspect query extracted from a broader corporate requirement and a 
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collection of highly relevant textual snippets retrieved from scholarly articles and patents, synthesize 
a concise, precise, and informative summary. This summary should clearly reflect the key 
technologies, methodologies, or applications that match the corporate requirement.   
 
Single-Aspect Query: 
{insert the single-aspect query} 
 
Relevant Textual Snippets: 
1. {textual chunk 1} 
2. {textual chunk 2} 
... 
10. {textual chunk 10} 
 
Please generate a clear and concise summary (about 100-150 words) explicitly highlighting what 
technological solutions, methods, or applications the company likely requires and what 
characteristics an ideal academic expert should possess. 

 
The output from the LLM for each single-aspect query 𝑞𝑞(𝑖𝑖) is a concise, structured judgement 

summary 𝐽𝐽(𝑖𝑖). Each 𝐽𝐽(𝑖𝑖) explicitly and succinctly captures critical semantic insights related to that 
specific aspect, including technical nuances, methodological preferences, and practical applications 
relevant to the original requirement. Next, we systematically aggregate the generated judgement 
summaries {𝐽𝐽(1), 𝐽𝐽(2), … , 𝐽𝐽(𝑁𝑁)} into a single unified hypothetical requirement document 𝑞𝑞agg�  utilizing 
STIGPT. We employ the following structured prompt explicitly designed to guide coherent 
aggregation: 

 
Prompt 3. 
Below are several distinct judgement summaries, each addressing a single aspect (Technology, 
Method, or Application) of a broader corporate technical requirement. Your task is to aggregate these 
summaries into a unified, coherent, and informative hypothetical requirement document. This final 
document should clearly and succinctly integrate all critical aspects into a single, comprehensive 
narrative. Maintain clarity and logical consistency throughout. 
 
Aspect-specific Judgement Summaries: 
1. {Judgement Summary for aspect 1} 
2. {Judgement Summary for aspect 2} 
... 
N. {Judgement Summary for aspect N} 
 
Please synthesize these summaries into a single cohesive hypothetical requirement document 
(approximately 150-200 words), suitable for accurately matching relevant scholarly expertise. 

The resulting unified document 𝑞𝑞agg�  is thus generated as a coherent, contextually rich HyDE. 
 
3.3 Multimodal Embedding Integration via Attention Distillation 

To ensure comprehensive semantic alignment and leverage both the nuanced context from the 
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original corporate requirement and the detailed insights encoded in the HyDE-generated hypothetical 
requirement document, we perform an embedding integration step employing attention-based 
fusion.  

We first independently embed the original corporate requirement text q and the aggregated 
HyDE-generated hypothetical requirement document 𝑞𝑞agg� , using the Chinese-BERT embedding 
model. Specifically, we obtain two separate embeddings, original requirement embedding 𝒛𝒛𝑞𝑞 and 

HyDE embedding 𝒛𝒛𝑞𝑞agg� . These embeddings explicitly capture the semantic richness and contextual 

detail inherent within each textual input, encoding both high-level intent from the original 
requirement and detailed, decomposed insights from the HyDE-generated document. 

To effectively integrate these two embeddings, we adopt a cross-attention fusion mechanism that 
explicitly models the semantic interplay between the original requirement and the detailed 
hypothetical requirement. This attention-based fusion explicitly enables mutual semantic refinement, 
capturing detailed and nuanced relationships that might be missed by independent embedding 
representations. 

𝑐𝑐𝑞𝑞 = Attention(𝑄𝑄 = 𝑧𝑧𝑞𝑞 ,  𝐾𝐾𝐾𝐾 = 𝑧𝑧𝑞𝑞ag� ),  𝑐𝑐𝑞𝑞� = Attention(𝑄𝑄 = 𝑧𝑧𝑞𝑞ag� , 𝐾𝐾𝐾𝐾 = 𝒛𝒛𝒒𝒒) (4) 
Where 𝑐𝑐𝑞𝑞 represents the refined semantic context of the original requirement text, explicitly 

informed by the detailed knowledge encapsulated within the HyDE embedding. 𝑐𝑐𝑞𝑞�  captures the 
refined detailed semantic information of the HyDE-generated hypothetical requirement document, 
explicitly aligned with the core intent encoded within the original requirement text. 

Finally, we concatenate the two attention-refined embeddings into a single, integrated semantic 
representation 𝒓𝒓𝒒𝒒 = �𝑐𝑐𝑞𝑞 | 𝑐𝑐𝑞𝑞� �. This unified semantic representation 𝒓𝒓𝒒𝒒 systematically captures and 
integrates both high-level and detailed semantic information from the original and HyDE-generated 
requirement texts. Consequently, it provides a precise, semantically rich input representation, 
significantly enhancing the accuracy and effectiveness of subsequent Social-Network Ranker (SNR) 
recommendation and matching tasks within our DualRAG-SNR framework. 
 
3.4 Social-Network Feature Extraction 

To accurately incorporate relational trust and academic quality into our recommendation process, 
we construct a heterogeneous social network explicitly integrating historical interactions among 
companies, digital scholars, and academic institutions.  

Our SN construction systematically captures diverse relationships and fine-grained interaction 
signals documented on the OTTP platform. For each company C, scholar S and institution U we 
prompt STIGPT with a chain-of-thought prompt (“Identify the main technology domains, application 
scenarios and collaboration history; think step-by-step before answering”) and parse the response 
into categorical attributes. Nodes and typed edges are organized as a heterogeneous graph GSN. 
Previous scholarly recommender graphs have considered only scholar‑scholar or scholar‑institution 
ties. Our context is different: OTTP logs fine‑grained company–scholar micro‑interactions—for 
example, page views, chat requests, sample downloads, and signed non‑disclosure agreements. We 

formalize each logged event as a directed, timestamped edge �𝐶𝐶
event, 𝑤𝑤, 𝜏𝜏
�⎯⎯⎯⎯⎯� 𝑆𝑆�  , where 𝑤𝑤 is a 

log‑frequency weight (e.g., count of message exchanges) and 𝜏𝜏  is the most recent interaction 
time. Edges are additionally labelled as positive (e.g., “contract signed”) or exploratory (e.g., 
“interacted”). Including such company–scholar (C–S) edges yields a heterogeneous graph 
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𝐺𝐺𝑆𝑆𝑆𝑆 = (𝑉𝑉𝑆𝑆𝑆𝑆 ,𝐸𝐸𝑆𝑆𝑆𝑆),  𝑉𝑉𝑆𝑆𝑆𝑆 = 𝐶𝐶 ∪ 𝑆𝑆 ∪ 𝑈𝑈,  𝐸𝐸𝑆𝑆𝑆𝑆  = {𝐸𝐸𝑆𝑆𝑆𝑆,𝐸𝐸𝐶𝐶𝐶𝐶 ,𝐸𝐸𝑈𝑈𝑈𝑈 ,𝐸𝐸𝐶𝐶𝐶𝐶 ,𝐸𝐸𝐶𝐶𝐶𝐶 ,𝐸𝐸𝑆𝑆𝑆𝑆) (2) 
We train RotatE to embed the graph, optimizing the translational distance. Because company–

scholar edges encode historical information‑asymmetry reduction, scholars that have interacted 
frequently with the querying company end up closer in the complex space, thereby raising their trust 
score when the embeddings are later fused with technical relevance. For the target company and the 
digital scholars, we get the final embeddings as 𝒉𝒉𝑪𝑪 and 𝒉𝒉𝑺𝑺.  
 
3.5 Extraction Requirement-Aware Fusion 

The concatenated context vector  𝑐𝑐𝑞𝑞 primarily encodes technical relevance, whereas the RotatE 
embeddings 𝒉𝒉𝑪𝑪,  𝒉𝒉𝑺𝑺 capture relational trust. Simply averaging the two would ignore the fact that 
different queries require different balances—an SME entering a green‑energy field for the first time 
places a premium on trust, whereas an experienced aerospace supplier may value cutting‑edge 
novelty. To address this heterogeneity, we frame fusion as a query‑conditioned gating 
problem. Specifically, we compute 

𝜔𝜔𝑞𝑞 = 𝜎𝜎�𝑊𝑊𝜔𝜔 𝑧𝑧𝑞𝑞� ∈ (0,1), (3) 
Where 𝜎𝜎 is the logistic function. We then let 
𝒉𝒉𝑆𝑆� = 𝜔𝜔𝑞𝑞 𝒉𝒉𝑺𝑺 + �1 −𝜔𝜔𝑞𝑞� Attn�𝑧𝑧𝑞𝑞 ,𝒉𝒉𝑺𝑺,𝒉𝒉𝑺𝑺�, 𝒉𝒉𝐶𝐶� = 𝜔𝜔𝑞𝑞 𝒉𝒉𝑪𝑪 + �1 − 𝜔𝜔𝑞𝑞� Attn�𝑧𝑧𝑞𝑞 ,𝒉𝒉𝑪𝑪,𝒉𝒉𝑪𝑪�, (4) 
So that when 𝜔𝜔𝑞𝑞 is large the system leans on historical trust, and when it is small it prefers 

semantic attention that re-weights the SN embeddings in light of the current requirement. The final 
fused vectors remain 𝒈𝒈𝑺𝑺 = �𝒄𝒄𝒒𝒒 || 𝒉𝒉𝑆𝑆��,  𝒈𝒈𝑪𝑪 = �𝒄𝒄𝒒𝒒 || 𝒉𝒉𝑪𝑪��,  where [ ⋅ || ⋅ ]  denotes vector 
concatenation. Attention-based fusion allows the system to weigh technical and social signals 
dynamically for each incoming query rather than relying on a fixed linear combination. 
 
3.6 Learning-to-Rank Matcher 

A pure cosine similarity under-fits the complexity of university–industry alignment because it 
assumes linear separability and equal contribution of each latent dimension. We therefore replace it 
with a pairwise neural ranker that is trained on implicit feedback from the OTTP logs. 
 
3.6.1 Scoring Function 

For any pair (C,S) we construct a feature vector 
𝑥𝑥𝐶𝐶𝐶𝐶  =  [ 𝑔𝑔𝐶𝐶  ;𝑔𝑔𝑆𝑆 ; |𝑔𝑔𝐶𝐶 − 𝑔𝑔𝑆𝑆| ;𝑔𝑔𝐶𝐶 ⊙ 𝑔𝑔𝑆𝑆] (5) 
Where | ⋅ |  denotes element-wise absolute value and ⊙ is the Hadamard (element-wise) 

product. 
The final matching score is produced by a two-layer multilayer perceptron: 

𝑓𝑓(𝐶𝐶, 𝑆𝑆) = 𝑊𝑊2 ϕ(𝑊𝑊1 𝑥𝑥𝐶𝐶𝐶𝐶 + 𝑏𝑏1) + 𝑏𝑏2 (6) 
With 𝜙𝜙 the GELU activation. 

 
3.6.2 Pairwise Loss 

The OTTP records sequences in which a company inspects multiple scholars but eventually 
“locks” on one (e.g., by requesting detailed pricing). We form training triples (𝐂𝐂, 𝐒𝐒+, 𝐒𝐒−)  and 
minimize the Bayesian personalized ranking (BPR) loss 

ℒℬ𝒫𝒫ℛ = −∑ logσ �𝑓𝑓(𝐶𝐶, 𝑆𝑆+) − 𝑓𝑓(𝐶𝐶, 𝑆𝑆−)�(𝐶𝐶, 𝑆𝑆+, 𝑆𝑆−)  (7) 
which pushes the chosen scholar 𝑆𝑆+ above non-chosen scholars 𝑆𝑆− in the ranking. At inference 

time, scholars are ordered by 𝑓𝑓(𝐶𝐶, 𝑆𝑆).  
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4. Experiments and Results 
4.1 Experimental Settings 

Task definition. We cast the university–industry matchmaking problem on Jiangxi OTTP as a 
requirement-to-Digital-Scholar matching task. Given a requirement text q posted by a company, the 
system must return a ranked list of Digital Scholar Agents, exactly one of which—according to the 
platform’s ground-truth record—ultimately signed a collaboration contract for that requirement. All 
other scholars are treated as potential negative samples. 

Dataset construction. We scrape the OTTP log for the 12-month window April 2024–March 2024. 
For each accepted deal we obtain (i) the full requirement statement; (ii) the identity and public corpus 
(papers, patents, slide decks) of the contracting scholar; and (iii) micro-interaction traces (profile 
views, chat messages, NDAs) between the firm and all scholars inspected prior to contract. After 
de-duplication and language normalization, we retain 412 requirement–scholar positive pairs 
spanning three R&D-intensive verticals—electronics (220), pharmaceuticals (57) and chemicals (135). 
The corresponding candidate pool contains 5428 Digital Scholars who were viewed at least once in 
the same period. Figures, tables and patent diagrams linked to each scholar are downloaded to 
support the multimodal pipeline. 

Train/validation/test split. We sort requirements chronologically, allocate the earliest 70 % to 
training, the next 10 % to validation (hyper-parameter tuning) and the final 20 % to held-out testing, 
yielding 288 / 41 / 83 positives, respectively. For each positive (𝑞𝑞, 𝑆𝑆+), we sample four scholars 𝑆𝑆− 
that (a) were viewed but not contracted for the same requirement and (b) have comparable publication 
volume, ensuring hard negatives and balanced class priors. The model therefore trains on 1440 pairs 
and is evaluated on 415 test pairs. 

Optimisation objective. Because the platform records implicit preference rankings rather than 
explicit relevance scores, we adopt the Bayesian Personalized Ranking (BPR) loss, which maximizes 
the margin between the contracted scholar and any negative for each requirement. Model parameters 
are trained for 15 epochs with the Adam optimizer. Early stopping is triggered if validation nDCG@10 
fails to improve for three consecutive epochs. 

Baseline methods. To gauge the contribution of each proposed component, we compare it 
against three representative baselines: 

1. ContentSim. Requirement and scholar corpora are embedded by SciBERT; scholars are 
ranked by cosine similarity. This baseline measures raw semantic overlap with no KG or 
social context. 

2. MMKG-RAG. Our retrieval-augmented generation model with the multimodal KG but 
without social-network embeddings or neural ranker; ranking is by cosine of the context 
vectors 𝑐𝑐𝑞𝑞 and 𝑐𝑐𝑠𝑠. 

3. GraphTrust. RotatE embeddings derived from the enriched social graph (including 
company-scholar interactions) are ranked by cosine similarity to the requirement’s 
RotatE-projected query embedding; no multimodal context is used. 

Our full system, DSA-LTR, integrates MMKG, requirement-anchored hand-in-hand attention, 
enriched social graph and the neural pairwise ranker described in Section 3. 
 
4.2 Evaluation Metrics and Results 

Metrics. Following prior work in personalized matching we report: 
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• Recall@k (k∈{5,10}) – proportion of queries whose true scholar appears in the top-k. 
• nDCG@10 – graded ranking quality accounting for the position of the positive. 
• Mean Reciprocal Rank (MRR) – average 1/rank of the true scholar. 
All metrics are computed on the held-out test set.  
 

Table 1: Experiment Result 
Model Recall@5 Recall@10 nDCG@10 MRR 

ContentSim 0.108 0.301 0.123 0.103 
MMKG-RAG 0.157 0.265 0.124 0.116 
GraphTrust 0.157 0.337 0.149 0.125 

DSA-LTR (ours) 0.373 0.554 0.306 0.252 
 

 
Figure 2: The framework for MMKG-SNR 

 
We show our results in Table 1 and Figure 2. The learned ranker (DSA-LTR) retrieves the true 

scholar within the top-5 suggestions for ≈37 % of requirements—more than triple the baseline 
ContentSim. Improvements in nDCG and MRR confirm that DSA-LTR not only finds the right expert 
more often but ranks them considerably higher on the list, which is critical for user adoption. 
 
4.3 Interaction-based Evaluation for Knowledge Transfer Efficiency 

Beyond traditional metrics (Recall, nDCG, MRR), we introduce an interaction-based evaluation 
metric explicitly designed to measure knowledge transfer success. Specifically, we argue that a higher 
frequency of interactions between recommended scholars and companies serves as a clear indicator of 
deeper mutual interest, strengthened relational trust, and ultimately, more successful and meaningful 
knowledge transfer. Higher interaction counts typically reflect more detailed, sustained discussions, 
extensive information exchange, and in-depth exploration of technological fit, explicitly indicating a 
robust knowledge transfer process that goes beyond superficial initial contacts. 

To explicitly assess this metric, we conducted an observational experiment involving 30 
companies per recommendation method, randomly assigned among our proposed DualRAG-SNR 
framework and baseline methods (ContentSim, GraphTrust, and Basic RAG). After initial 
recommendations, we explicitly monitored and counted all interactions occurring between each 
recommended scholar and respective company during an explicit two-week observation period. 
These interactions included detailed chat exchanges, data sample requests, non-disclosure agreement 
(NDA) exchanges, iterative clarification inquiries, and negotiation discussions—representing 
comprehensive knowledge transfer exchanges. 

The explicit results from our observational experiment are presented in Table 2 below, clearly 
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illustrating the Average Interaction Count (AIC) and corresponding standard deviations observed for 
each method: 

 
Table 2: Interaction-based Evaluation Results. 

Method Average Interaction Count (AIC) Standard Deviation 
ContentSim 3.13 1.67 
GraphTrust 5.27 2.04 
Basic RAG 6.93 2.36 

DualRAG-SNR 10.2 2.79 
 
Table 2 explicitly demonstrates that DualRAG-SNR facilitates significantly more interactions 

compared to baseline methods. Specifically, the average interaction count for DualRAG-SNR (10.20) 
substantially exceeds ContentSim (3.13), GraphTrust (5.27), and Basic RAG (6.93). This explicitly 
confirms our hypothesis that DualRAG-SNR enables deeper, richer, and more sustained knowledge 
exchanges. The higher interaction frequency explicitly indicates that recommended scholars are more 
relevant, eliciting stronger corporate interest and greater trust, leading to extensive and detailed 
knowledge transfer. Moreover, the explicit standard deviation for DualRAG-SNR indicates consistent 
and robust performance across diverse requirements, further validating our method’s efficacy. 

Overall, this interaction-based evaluation explicitly complements standard ranking metrics, 
providing a clear, practical measure of the meaningful depth and quality of knowledge transfer 
facilitated by the DualRAG-SNR recommendation framework. 
 
5. Conclusion 

In this research, we introduced DualRAG-SNR, a novel framework explicitly designed to bridge 
critical information asymmetry and trust-related barriers in academia-industry collaboration. 
DualRAG-SNR effectively addresses two fundamental challenges often encountered in such 
collaborative contexts: the ambiguity and multi-dimensionality of corporate technical requirements, 
and the inherent relational trust uncertainty between companies and digital scholars. To tackle 
requirement ambiguity, DualRAG-SNR incorporates a two-stage RAG process—typed GraphRAG 
and VDB retrieval—followed by a structured HyDE generation using an advanced LLM. This 
hierarchical semantic processing explicitly clarifies complex, multi-aspect corporate requirements, 
significantly improving recommendation accuracy and interpretability. 

Moreover, the framework explicitly constructs and leverages an enriched SN, incorporating 
fine-grained historical interactions between companies and scholars, as well as explicit metrics of 
scholarly quality and institutional reputation. By embedding this heterogeneous SN using RotatE, 
DualRAG-SNR explicitly integrates robust trust signals into the recommendation process. The 
subsequent requirement-aware fusion step explicitly balances semantic relevance and relational trust, 
adaptively tailoring recommendations to diverse company contexts. 

Empirical validation, performed explicitly using real-world transactional data from the Jiangxi 
OTTP platform, demonstrated DualRAG-SNR’s superior recommendation performance compared to 
several strong baseline methods (ContentSim, GraphTrust, Basic RAG). Specifically, DualRAG-SNR 
substantially enhanced recall, nDCG, and MRR scores, demonstrating clear advantages in semantic 
matching precision and trust-based recommendation. Additionally, our explicit introduction of an 
interaction-based evaluation metric further revealed that DualRAG-SNR significantly increases the 
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depth and quality of post-recommendation interactions, explicitly indicating more effective and 
sustained knowledge transfer processes. These deeper interactions represent explicit evidence of 
heightened mutual trust, sustained interest, and richer collaborative knowledge exchange, thus 
strongly supporting DualRAG-SNR's practical efficacy. 
 
5.1 Theoretical Implications 

From a theoretical perspective, our study explicitly contributes to literature on 
retrieval-augmented generation and knowledge recommendation systems. First, we advance existing 
RAG methodologies by explicitly introducing a hierarchical, typed retrieval mechanism (DualRAG) 
explicitly optimized for multi-aspect and ambiguous semantic requirements. Our results clearly 
demonstrate that explicitly decomposing requirements into single-aspect semantic queries and 
independently retrieving contextually coherent information explicitly improves semantic clarity and 
recommendation accuracy. Additionally, we contribute explicitly to trust modeling literature by 
introducing and validating the theoretical importance of exploratory interactions (e.g., profile views, 
chat exchanges, NDAs) as explicit indicators of evolving relational trust within collaborative contexts. 
Our findings explicitly highlight these exploratory interactions as critical signals of early-stage 
information asymmetry reduction, significantly enriching existing theoretical frameworks on trust 
evolution and knowledge transfer dynamics. 
 
5.2 Practical Implications 

From a practical standpoint, our DualRAG-SNR framework explicitly provides actionable 
insights for digital technology trading platforms, SMEs, and academic institutions. Digital platforms, 
such as OTTP, can explicitly implement our framework to facilitate precise and trustworthy 
recommendations, explicitly enhancing collaborative matchmaking effectiveness. SMEs benefit 
explicitly through significantly reduced uncertainty and improved clarity regarding academic 
expertise and research capabilities, facilitating deeper, more meaningful interactions, and more 
efficient collaborations. Academic institutions and scholars explicitly benefit from improved visibility 
and targeted exposure to relevant industry partners, explicitly increasing the potential for impactful 
collaborative research and technology transfer. Additionally, our explicit demonstration of deeper 
interaction frequency as a practical indicator of successful knowledge transfer explicitly provides a 
clear, actionable metric that industry and academia stakeholders can monitor to continuously 
improve collaborative processes and outcomes. 
 
5.3 Limitations and Future Directions 

Despite these explicit contributions, our study presents limitations. The empirical validation 
explicitly focused on a specific regional platform, potentially limiting generalizability to broader 
contexts. Future research explicitly extending and validating DualRAG-SNR across multiple 
geographic regions and diverse industry sectors could further generalize and strengthen our findings. 
Additionally, future work might explicitly explore incorporating reinforcement learning mechanisms 
within the recommendation framework, explicitly enabling digital scholar agents to proactively adapt 
interactions based on explicit real-time feedback from companies, thus further enhancing the practical 
efficiency and adaptability of knowledge transfer processes. 

In summary, the DualRAG-SNR framework explicitly addresses critical limitations inherent in 
traditional academia-industry matchmaking methods. Our explicit integration of hierarchical 
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semantic retrieval, enriched social network trust signals, and interaction-based evaluation explicitly 
contributes both theoretically and practically, significantly advancing knowledge recommendation 
effectiveness, trust modeling theory, and practical knowledge transfer processes within 
academia-industry collaborations. 
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