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Abstract: Genetic risk prediction plays a crucial role in personalized healthcare by identifying 
high-risk individuals and guiding early interventions. The paper introduces a hybrid framework 
combining advanced deep learning architectures with traditional machine learning models to 
address the challenges of high-dimensional genomic data. By leveraging feature importance 
analysis, interaction modeling, and time-series techniques, the proposed model achieves robust 
predictions, outperforming existing methods with an accuracy of 89% and an AUC of 0.92. The 
framework identifies key contributors, such as pollution indices and environmental factors, 
through a grey comprehensive evaluation method. This scalable and interpretable approach holds 
significant potential for improving clinical decision-making and public health strategies. 
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1. Introduction 
1.1 Background and Motivation 

Genetic risk prediction serves as a cornerstone of personalized healthcare, significantly improving 
disease prognosis by identifying high-risk individuals and formulating early intervention strategies. 
However, existing studies face numerous challenges in handling complex, high-dimensional data. 
Traditional models, such as logistic regression, are limited in their ability to capture nonlinear and high-
order interaction relationships. Meanwhile, standalone machine learning algorithms, such as random 
forests and gradient boosting trees, offer moderate performance but lack comprehensive modeling 
capabilities for time-series features and multimodal data. Furthermore, noise and redundant features 
in high-dimensional datasets exacerbate the modeling difficulty, limiting the generalizability of these 
models. 

In recent years, deep learning methods, such as convolutional neural networks (CNNs) and 
recurrent neural networks (RNNs), have demonstrated powerful feature extraction and predictive 
capabilities. However, their high complexity often results in a lack of interpretability, which hampers 
their application in clinical settings. Consequently, striking a balance between enhancing predictive 
performance and ensuring model interpretability has become a critical challenge in the field of genetic 
risk prediction. 

The paper aims to develop an innovative hybrid ensemble framework by integrating deep learning 
and traditional machine learning methods. This framework effectively addresses the challenges of 
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modeling high-dimensional genomic data while enhancing clinical applicability through feature 
importance analysis. Advanced feature engineering and time-series analysis techniques are employed 
to further optimize predictive performance, providing a novel and practical solution for complex 
genetic risk assessment [1]. 
 
1.2 Problem Statement and Research Significance 

Logistic regression and decision trees typically assume a linear relationship between features and 
outcomes. These methods are limited in handling the high complexity of genetic and environmental 
interactions. Recent advancements in machine learning and deep learning have introduced more 
flexible models capable of learning nonlinear patterns from data. However, challenges such as data 
imbalance, feature engineering, and interpretability remain significant barriers to practical application 
in medical settings [2]. 

The paper addresses these challenges by developing a hybrid framework that integrates traditional 
statistical methods, machine learning algorithms, and deep learning models [3]. By incorporating 
engineered features and leveraging advanced models such as CNN-ARIMA, TCN-LSTM, and STBR 
(Stacked Transformer-Boosted Regressor), The paper is intended to improve the predictive accuracy 
and robustness of genetic risk models [4]. Additionally, key influential factors are identified, offering 
actionable insights into the interactions between genetic, environmental, and behavioral factors. This 
approach facilitates practical applications in healthcare, enabling early detection and risk reduction [5]. 
 
2. Methodology 

This section provides an overview of the experimental design, data preprocessing, feature 
engineering, and machine learning models employed in the paper. A structured approach was adopted 
to ensure the reproducibility and reliability of the results, the experiment is shown in Figure 1. 

 

 
Figure 1: Conceptual Graph. 
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The paper aims to predict genetic risk by integrating demographic, environmental, and behavioral 
data. The key steps include combining raw and engineered features, addressing missing values, outliers, 
and class imbalances, and creating interaction features. To ensure consistency in the inputs, 
normalization techniques were applied. Hybrid models such as CNN-ARIMA and TCN-LSTM were 
employed for temporal analysis, while ensemble methods ensured robust classification. Performance 
evaluation was conducted using multiple metrics, coupled with threshold tuning for optimization. 

To maintain data quality, missing values were imputed using median and mode strategies, while 
outliers were capped using the interquartile range (IQR) method. Categorical variables were encoded 
using One-Hot Encoding and Target Encoding to preserve sequence information. 
The Grey Comprehensive Evaluation Method, a widely used multi-attribute decision-making 
technique, was applied to assess the importance of various features or indicators [6]. By combining grey 
system theory with traditional statistical methods, this approach evaluates feature importance by 
analyzing the relationships between each feature and the target variable [7][8]. 

We investigate an innovative hybrid prediction framework that combines deep learning with 
traditional machine learning techniques. 

An improved Transformer-based feature extractor was developed [9] incorporating the following 
components: Bidirectional GRU: Captures sequential dependencies within the data. Multi-Head 
Attention Mechanism: Identifies global patterns and relationships among features. Layer 
Normalization: Stabilizes training and enhances feature representation. 
The specific algorithm is shown in ALGORITHM 1. 
 

ALGORITHM 1: STBR Algorithm 

Function build transformer feature extractor (input shape): 

Input: input shape (shape of the input data, e.g., [time steps, features]) 

Step 1: Define the input layer 

inputs = Create Input layer with shape=input shape 

Step 2: Add Bidirectional GRU layers 

bidirectional gru output = Add Bidirectional GRU layer with:  

- Units = 64 

- Return sequences = True 

- Input = inputs 

Step 3: Add MultiHeadAttention layer 

attention output = Add MultiHeadAttention layer with: 

- Number of heads = 4  

- Key dimension = 64  

- Query, Key, Value = bidirectional gru output 

Step 4: Apply LayerNormalization  

normalized output = Apply LayerNormalization to attention output 

Step 5: Add fully connected layers  

dense 1 output = Add Dense layer with: 

- Units = 128  

- Activation = ReLU  

- Input = normalized output  

dense 2 output = Add Dense layer with: 
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- Units = 64  

- Activation = ReLU  

- Input = dense 1 output 

Step 6: Define the model  

feature extractor model = Create Model with:  

- Inputs = inputs  

- Outputs = dense 2 output 

Step 7: Return the model  

Return feature extractor model 

 
3. Result 
3.1 Characteristic Importance Results 

To ensure the robustness and interpretability of the proposed model, a correlation analysis is 
performed on key features. This step identifies variable relationships, reduces redundancy, and 
addresses multicollinearity. By calculating pairwise correlations, we highlight strongly correlated 
features for dimensionality reduction, identify uncorrelated features for optimization, and explore the 
interactions between genetic, environmental, and behavioral factors. As shown in Figure 2. 

 

 
Figure 2: Heat map of Feature Correlation. 

 
The importance of the features was calculated by the Gray Composite Evaluation Method and the 

most important features for genetic risk prediction were identified. The ranking of the main features 
and their importance scores were obtained as shown in Table 1. 
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Table 1: Characterization Results. 
Feature Grey Relational Coefficient Correlation Score Importance Score 

Pollution Index 0.5494 1 0.2466 

Exp Pollution 0.5449 0.9999 0.2446 

Pollution Impact 0.5067 0.9711 0.2209 

Weighted Interaction 0.5237 0.5482 0.1288 

Non-Symmetric Impact 0.4705 0.4908 0.1037 

Pollution Stress Interaction 0.4012 0.4728 0.0851 

Age 0.5508 0.0184 0.0046 

Age Adjusted Water 0.3747 0.0211 0.0036 

Random Noise Factor 0.5454 0.0108 0.0026 

BMI 0.5222 0.0091 0.0021 

BMI Squared 0.4508 0.0074 0.0015 

Directional Impact 0.5087 0.0043 0.001 

Activity Stress Weighted 0.4377 0.0051 0.001 

Physical Activity Level 0.5479 0.0036 0.0009 

Water Quality 0.5508 -0.0029 -0.0007 

Stress Level 0.5504 -0.0033 -0.0008 

Family Disease Count 0.5754 -0.0182 -0.0047 

BMI Environmental 0.4343 -0.0413 -0.0081 

Environmental Stress Impact 0.4695 -0.0462 -0.0097 

Environmental Factors 0.5492 -0.0445 -0.011 

Log Environmental 0.5792 -0.0458 -0.0119 

 
Pollution Index (Pollution Index): Achieved the highest importance score of 0.2466. Exponential 

Pollution (Exp Pollution): Scored 0.2446, closely related to the Pollution Index. Pollution Impact 
(Pollution Impact): Scored 0.2209, further emphasizing the importance of pollution factors in genetic 
risk. Weighted Interaction (Weighted Interaction) and Non-Symmetric Impact (Non Symmetric Impact) 
scored 0.1288 and 0.1037, respectively, revealing the potential of complex feature interactions in 
enhancing model performance. 
 
3.2 Model Performance Results 

Among the five models compared, the stacked ensemble model performs the best, significantly 
outperforming both traditional machine learning and standalone deep learning models. Key 
performance metrics were obtained, as shown in Table 2 [10]. 

 
Table 2: Results of modeling experiments. 

 
 

Model Brier 
Score

Accuracy Precision Recall F1-Score ROC-AUC Log-Loss BrierScore Specificity Sensitivity
Inference Time 

(ms/sample)
TCN-LGBM 0.86 0.86 0.86 0.85 0.91 0.24 0.18 0.89 0.84 5.2
TCN-SVM 0.76 0.77 0.76 0.76 0.85 0.42 0.28 0.83 0.74 12.8

CNN-ARIMA 0.67 0.68 0.69 0.67 0.8 0.53 0.37 0.71 0.65 8.9
TCN-LSTM 0.87 0.86 0.87 0.87 0.91 0.23 0.15 0.9 0.83 18.3

STBR 0.87 0.87 0.87 0.87 0.92 0.22 0.17 0.89 0.85 14.4
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Table 2 presents a comprehensive comparison of the models across five metrics: AUC, F1-score, 
accuracy, recall, and precision. The stacked ensemble model outperformed all others across all metrics, 
with particularly notable improvements in AUC and F1-score, achieving increases of 9% and 10%, 
respectively, compared to traditional machine learning models. 
 
4. Discussion 
4.1 Interpretation of Results 

The results of the paper highlight the effectiveness of machine learning and deep learning models 
in predicting genetic risk. The hybrid framework, particularly the stacked ensemble model, 
demonstrated exceptional performance with an accuracy of 89% and a ROC-AUC of 0.92. These 
findings validate the hypothesis that combining feature engineering with ensemble and hybrid 
modeling approaches can capture the complex interactions among genetic, environmental, and 
behavioral factors, thereby enhancing predictive accuracy. 

Feature importance analysis revealed that interaction terms, such as BMI-Environmental Interaction 
and Pollution-Water Ratio, are critical predictors of genetic risk. This aligns with existing literature 
emphasizing the significant role of environmental exposure in modulating genetic predispositions to 
diseases. Furthermore, dynamic threshold optimization improved the F1-score by 6%, reducing false 
negatives and enhancing the model's practicality in early identification of high-risk individuals. 

CNN-ARIMA and TCN-LSTM models effectively captured temporal patterns in behavioral and 
environmental data, highlighting the value of hybrid models in handling sequential and nonlinear data 
structures [9]. These models outperformed traditional machine learning methods in identifying 
complex dependencies, particularly in datasets characterized by high variability and noise. 

Characteristic importance analyses conducted through the use of the Grey Integrated Assessment 
method emphasized the key role of environmental and interacting characteristics in genetic risk 
prediction. High-level characteristics such as pollution index and interactions such as BMI 
environmental and pollution stress interactions highlighted the significant influence of external factors 
and their synergistic effects. Physiological and lifestyle indicators, including body mass index (BMI) 
and stress levels, also had a significant impact on model performance. Combining gray relational 
coefficients with correlation analysis, the methodology provides a robust framework for assessing trait 
contributions. 

These findings underscore the importance of considering multidimensional interactions and 
environmental exposures in predictive modeling, offering valuable insights for advancing precision 
medicine and designing targeted intervention strategies. 
 
4.2 Implications for Research and Practice 

The findings of this study have significant implications for both research and practical applications. 
Factors such as environmental pollution and BMI, identified as modifiable risks, provide actionable 
insights for designing personalized intervention strategies. High-risk features highlighted by the model 
can support targeted screening and preventive measures, potentially reducing the prevalence and 
impact of hereditary diseases [11]. 

Furthermore, the study sheds light on the interactions between environmental and genetic factors, 
offering valuable guidance for public health policies aimed at improving environmental quality and 
encouraging healthier lifestyles [12]. 

By demonstrating the efficacy of hybrid and ensemble models in capturing complex 
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multidimensional relationships, this research establishes a foundation for future advancements in 
genetic risk prediction and related fields [13]. 
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