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Abstract: Frequency disturbances in the power grid frequently occur in wind power generation. 
To address the issue that doubly fed motors cannot effectively respond to grid frequency 
disturbances, leading to significant output power disturbances, this paper draws on a doubly fed 
wind turbine model to establish a doubly fed wind turbine frequency response model. The 
parameters of the speed control loop were optimized using a multi-objective 
optimization-weighted genetic algorithm. The study demonstrates that this model achieves 
frequency response while effectively reducing output power overshoot and recovery time, 
thereby enriching existing research findings on the transient stability of new energy grids. 
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1. Introduction 

To achieve the goal of carbon neutrality, renewable energy sources (RES), such as wind and solar, 
are increasingly replacing conventional synchronous generators (SG) in the grid. These shifts in the 
energy mix have dramatically altered the dynamic characteristics of the power system and have led to 
the development of several novel technologies. For example, in RES power generation, maximum 
power point tracking (MPPT) control is frequently used. The core objective of MPPT techniques in 
wind power generation is to maximize the wind energy capture efficiency by regulating the generator 
rotational speed or pitch angle, which can be adjusted by estimating the wind speed, so that the wind 
turbine maintains an optimal blade tip speed ratio at different wind speeds. Although these 
techniques can maximize the utilization of wind and solar resources, they do not respond quickly to 
frequency disturbances occurring on the grid side and do not have good transient stability [1]. 
Transient stability refers to the power system operation in a stable state encountered a large 
perturbation when the perturbation disappears whether it can return to the original state or reach a 
new acceptable stable state. As a result, the frequency regulation capability of the system decreases 
with the increase of renewable energy penetration, which leads to increasing concern about the 
stability of the power system. In this regard, it is necessary to propose new additional frequency 
response strategies to improve the transient stability of DFIG. 

Doubly fed induction generators (DFIG) are one of the main forms of wind power generation. 
The rotor-side converter (RSC) in a DFIG regulates the excitation current by means of field-oriented 
control (FOC) to achieve independent control of active and reactive power, constant frequency and 
constant voltage [2,3]. This control strategy theoretically separates the electromagnetic dynamics of 
the generator from the grid frequency and voltage fluctuations, enabling the DFIG to operate as a 
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quasi-synchronous machine with adjustable power output. The DFIG is directly connected to the 
power system through the stator circuit and magnetic circuit inside the motor to ensure that the stator 
frequency is synchronized with the grid frequency. On this basis, mechanical and electrical 
decoupling is achieved by control devices such as RSC controllers, grid-side converter (GSC) 
controllers, and phase-locked loops (PLLs). [4] However, for a controller driven by state deviations, 
the delayed nature of the response inevitably leads to coupling between the turbine and the grid. In 
DFIG application scenarios, ignoring this dynamic characteristic will lead to deviations in system 
frequency dynamic analysis and safety assessment from the actual situation. 

Existing studies have recognized this complexity and conducted research focusing on frequency 
response modelling and double-fed converter characterization. One study developed a generalized 
amplitude-phase dynamics model that accurately captures the behaviour of a doubly fed generator 
on various electromechanical time scales [5]. However, the model cannot be directly integrated into a 
full-system frequency response model and lacks the specialization of frequency dynamics analysis. It 
is a higher-order model that comprehensively considers the complete structure of the control 
machinery, but its application requires the use of system network equations to calculate in detail the 
amplitude and phase perturbations of the voltage at each grid point. To address these limitations, 
many studies have started to work on down-ordering and improving the model. However, there are 
different views on the focus of these improvements. Some studies have considered PLL controllers as 
the focus and proposed an alternative inertia control method for DFIG-based wind turbines by 
directly tuning the PLL response [6,7], while some studies have focused on RSC and proposed a novel 
stator power and frequency control method to realize the magnitude of the rotor current vector to 
control the stator frequency [8,9]. In addition to the above improvements in controllers, there are also 
studies focusing on the motor body, using a third-order model that preserves the rotor loop dynamics 
and mechanical equations of motion. However, due to the inverter control strategy, the time scales of 
both stator and rotor loop dynamics of the DFIG are milliseconds, which do not belong to the same 
time scale as the frequency response, which also means that the model can be further down ordered 
[10]. In terms of DFIG frequency response characterization, many literatures consider that the 
response of DFIG belongs to the category of inertia response and is analysed with the help of concepts 
such as inertia and damping coefficients, which are analogous to the inertia study of synchronous 
motors [6,11]. Although this facilitates the analysis of system frequency dynamics, the two are not 
equivalent. The synchronous motor inertia response originates from the spontaneous release of rotor 
kinetic energy, while the DFIG virtual inertia relies on the speed-frequency decoupling control, and 
there are essential differences between the two in terms of time constants, energy sources and 
nonlinear coupling characteristics [12-15]. In general, the accuracy and simplicity of the existing DFIG 
frequency response model has room for improvement, and the explanation of the response 
mechanism is not thorough enough. 

Focusing on the gaps in current research, this work makes several key contributions: 
1.Development of a Novel Model: A single-input single-output DFIG frequency response model 

is established, which reduces the model complexity while maintaining accuracy. 
2.parameter optimization: The optimal parameters of the rotational speed ring are derived by a 

single-objective genetic algorithm. 
3. Elimination of Dependency on Distributed Information: The model removes the need for 

distributed information such as voltage amplitudes and phase angle disturbances at the grid 
connection point. It uses general system information as the sole input, allowing for direct integration 
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into the system frequency response (SFR) model, thereby enhancing usability. 
4. Mechanism Identification: The model reveals that the mechanism behind DFIG response to 

system frequency changes is the cascade effect of the PLL and speed loop. 
5. Frequency Response Analysis: Through theoretical calculations and simulation verification, it 

is demonstrated that the frequency response of DFIG does not fall within the range of inertia 
response. 

6. Impact Analysis: The study analyses the influence of frequency dynamics when DFIG is 
integrated with the electricity system 

 
2. Frequency Response Model of DFIG 
2.1 Basic Model Derivation 

The research object of this paper is the response of DFIG regarding system frequency 
disturbances. What this novel concerns is the dynamic characteristics of DFIG in the dynamic time 
scale of power system frequency. This time scale is large, which belongs to the time scale extent of 
electromechanical transient, ranging from a few seconds to tens of seconds. To decrease the model 
complexity and highlight the main contradiction, make degradation and simplification for links 
beyond the time scale of the concerned issue according to the principle of multi-time scale system 
modeling and make the following assumptions [16, 17]: 

1) Ignore the millisecond electromagnetic transient process of the internal flux linkage of the 
motor. 

2) Ignore the millisecond dynamic regulation process of the inner loop of the rotor-side 
converter. 

3) Ignore the hundred millisecond DC voltage control process of the grid-side converter. 
4) Ignore the minute-level wind speed change, considering the pitch and yaw control system 

does not operate during this period. 
5) Because the frequency deviation of power system is generally small, the small disturbance 

linearization model is adopted. 
According to the conventional modeling of the generator, the positive direction of the active 

power is specified to flow from the motor to the power grid. Meanwhile, the DFIG is assumed to be 
stator voltage vector-oriented control, and the voltage vector and the d-axis weight are combined 
with a delay of 90°on the q-axis. According to the typical control strategy of DFIG shown in Fig.1, the 
unitized model of DFIG can be established, when the controller structure is adopted, the linear 
expressions of the stator loop power and internal potential affected by the controller and system 
disturbance are as follows [18, 19]: 
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Figure 1: Basic structure of DFIG and block diagram of vector control 

 
𝛷𝛷𝑝𝑝𝑝𝑝𝑝𝑝 is the closed-loop transfer function of PLL. The specific expression is shown in formula (4). 

The PLL open loop transfer function is denoted as 𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑝. 

𝛷𝛷𝑝𝑝𝑝𝑝𝑝𝑝 =
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The relationship between the total output power 𝑃𝑃𝑒𝑒, stator power 𝑃𝑃𝑠𝑠and rotor power 𝑃𝑃𝑟𝑟  of DFIG 
can be expressed as equation (5): 
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On the other hand, the rotor motion equation of DFIG can be expressed as formula (6) [20]: 
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The process of stator power and system frequency affecting the speed change of DFIG can be 
obtained by linearizing the equations (5) and (6), shown in formula (7): 
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Substituting Eq. (7) into Eq. (2,3) to eliminate the rotational speed 𝛥𝛥𝜔𝜔𝑚𝑚(𝑠𝑠) and integrating it 
with Eq. (1), the complete expression of the internal potential amplitude and phase angle can be 
obtained as equations (8) and (9): 
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For the convenience of description, first make the following definition, shown in equation (10): 

𝐺𝐺𝜔𝜔 =
𝑘𝑘𝑝𝑝,𝜔𝜔𝑠𝑠 + 𝑘𝑘𝑖𝑖,𝜔𝜔
(2𝐻𝐻𝐻𝐻 + 𝐹𝐹)𝑠𝑠

(10) 

𝐺𝐺𝜔𝜔  is the open loop transfer function of the speed loop. Since the frequency response 
characterization study is concerned with the change of output power of the equipment after 
frequency disturbance, Eq. (1) can be linked with Eq. (8) and (9). Then, 𝛥𝛥𝛥𝛥  and 𝛥𝛥𝜃𝜃𝑒𝑒  can be 
eliminated to get the expression of system voltage and phase angle deviation driving the stator power 
of DFIG, as shown in equations. (11) and (12): 
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It can be seen from Equation (12) that the element corresponding to the voltage disturbance in 
the transfer function matrix 𝐴𝐴𝑠𝑠  is zero, and the reactive power controller has no effect on the 
dynamic process of frequency response. Therefore, under the principle of multi-time scale reduction, 
the voltage disturbance and reactive power control loop of the grid-connected point hardly affect the 
active power dynamic characteristics of the model on the frequency dynamic time scale. Next, by 
linearizing Eq. (5) and substituting it into Eq. (6), the disturbance of the total output power of DFIG 
can be obtained by eliminating 𝛥𝛥𝜔𝜔𝑚𝑚 ,shown as formula (13): 
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𝑃𝑃𝑒𝑒,0 is the steady-state value of DFIG electromagnetic power. According to Eq. (15), the total 
output power of DFIG is affected by both 𝛥𝛥𝜔𝜔𝑔𝑔(𝑠𝑠) and 𝛥𝛥𝑃𝑃𝑠𝑠(𝑠𝑠). The term 𝛥𝛥𝜔𝜔𝑔𝑔(𝑠𝑠) reflects the process 
that the system frequency disturbance directly affects the output power change, which is similar to 
the asynchronous motor and belongs to the inherent characteristics of the motor, and according to Eq. 
(12), 𝛥𝛥𝑃𝑃𝑠𝑠(𝑠𝑠) is the function of 𝛥𝛥𝜔𝜔𝑔𝑔(𝑠𝑠) (the differential of 𝛥𝛥𝜃𝜃𝑔𝑔(𝑠𝑠)), which reflects the role of the 
controller under the disturbance of 𝛥𝛥𝜔𝜔𝑔𝑔(𝑠𝑠). Substituting Eq. (11) into Eq. (13) and Eq. (14). 
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− 1� �1 +
𝑘𝑘
𝑠𝑠
�

1
(1 + 𝐺𝐺𝜔𝜔)�1 + 𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑝�

𝛥𝛥𝜔𝜔𝑔𝑔(𝑠𝑠) (15) 

The simplified expression of the reduced-order frequency response model of DFIG can be 
obtained after eliminating the overlapped zeros and poles in equation (15) as shown in equation (16). 
The model takes the global information of frequency variation 𝛥𝛥𝜔𝜔𝑔𝑔  as the only input, and the 
solution of response power does not depend on the local information such as voltage disturbance and 
phase disturbance at the grid-connected point. When analyzing the system frequency response, it is 
not necessary to construct the network equation, and the model can be directly integrated into the 
power SFR model to analyze the system frequency dynamics in the scenario of high proportion of 
wind power access, shown as equations. (16) and (17): 

𝛥𝛥𝑃𝑃𝑒𝑒(𝑠𝑠) = −𝑃𝑃𝑒𝑒
�2𝐻𝐻𝐻𝐻 − � 𝑃𝑃𝑠𝑠𝛺𝛺𝑚𝑚

− 𝐹𝐹�� (𝑠𝑠 + 𝑘𝑘)𝑠𝑠2

𝐶𝐶𝜔𝜔(𝑠𝑠)𝐶𝐶𝑝𝑝(𝑠𝑠) 𝛥𝛥𝜔𝜔𝑔𝑔(𝑠𝑠) (16) 

�
𝐶𝐶𝜔𝜔(𝑠𝑠) = 2𝐻𝐻𝐻𝐻 + 𝐹𝐹 + 𝑘𝑘𝑝𝑝,𝜔𝜔𝑠𝑠 + 𝑘𝑘𝑖𝑖,𝜔𝜔
𝐶𝐶𝑝𝑝(𝑠𝑠) = 𝑠𝑠2 + 𝑘𝑘𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠 + 𝑘𝑘𝑖𝑖,𝑝𝑝𝑝𝑝𝑝𝑝

(17) 
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According to Eq. (16), the block diagram of DFIG total output power response system frequency 
deviation and the frequency response model of DFIG are shown in Fig. 2. It is worth noting that the 
DFIG frequency response model proposed in this paper is suitable for the wind speed range of 0 ~ 1.2 
p.u. Due to the neglect of the dynamic process of the pitch system during modeling. 

 

 

Figure 2: Frequency Response Model of DFIG. 

 
2.2 Genetic Algorithm Optimization 

In this paper, the parameters of the rotating speed ring are optimized by the weighting method 
of multi-objective optimization based on genetic algorithm. The multi-objective optimization problem 
involves multiple conflicting objective functions, and a set of solutions needs to be found to optimize 
all the objectives as much as possible. The weighting method converts the multi-objective into a 
single-objective function by assigning weights to each objective [21, 22]. The mathematical expression 
is shown in equation (17). 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧ 𝐹𝐹(𝑥𝑥) = �𝑤𝑤𝑖𝑖𝑓𝑓𝑖𝑖(𝑥𝑥)

𝑘𝑘

𝑖𝑖=1

�𝑤𝑤𝑖𝑖 = 1
𝑘𝑘

𝑖𝑖=1

𝑓𝑓𝑖𝑖
,(𝑥𝑥) =

𝑓𝑓𝑖𝑖(𝑥𝑥)− 𝑓𝑓𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚

𝑓𝑓𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥)− 𝑓𝑓𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥)

(18) 

Where 𝑤𝑤𝑖𝑖  is the weight value; to minimize the change 𝛥𝛥𝑃𝑃𝑒𝑒 after the frequency perturbation, the 
above equation is used for normalization. The principle is as follows: a Cost Function is defined for 
evaluating the RPM loop parameters in the genetic algorithm. The cost function is based on three 
error metrics: the integral of squared error (ISE), the integral of absolute error (IAE) and the integral 
of time-weighted absolute error (ITAE). These metrics are weighed and summed up to obtain the 
total cost 𝐽𝐽. The objective is to minimize 𝐽𝐽. The relationship between 𝐽𝐽 and 𝛥𝛥𝑃𝑃𝑒𝑒 is proportional, and 
when j takes the minimum value, it implies that 𝛥𝛥𝑃𝑃𝑒𝑒 is the minimum value. The first element of the 
input vector x is assigned to 𝑘𝑘𝑝𝑝,𝜔𝜔 and the second element is assigned to 𝑘𝑘𝑖𝑖,𝜔𝜔; the values of both are 
written to the files kp.dat and ki.dat, respectively, and three weights 𝑤𝑤1 = 0.6,𝑤𝑤2 = 0.1,𝑤𝑤3 = 0.3 , are 
defined for ISE, IAE, and ITAE, respectively, to run the Simulink model and to generate a variable 
named err (or other outputs), which contains the error signals and time information. The specific code 
is shown in algorithm 1. 

 
Algorithm1 
% Cost function based on ISE, IAE and ITAE 
w1 = 0.6; w2 = 0.1; w3 = 0.3; 
ISE=w1*sum((err.signals.values).^2); 
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IAE=w2*sum(abs(err.signals.values)); 
ITAE=w3*sum(err.time .* abs(err.signals.values)); 
J = ISE + IAE + ITAE; 
 
Through hundreds of iterations, the optimal parameters can be found: 𝑘𝑘𝑝𝑝,𝑤𝑤 = 80.158, 𝑘𝑘𝑖𝑖,𝑤𝑤 =

2.2735. 
 
3. Model Simulation and Analysis 
3.1 Model Advantages 

This simulation uses a ramp signal starting at t=5s as input, simulating angular frequency 
disturbances with an amplitude of 0.02 p.u. Based on its output characteristics, the frequency 
response of the doubly-fed converter is designed, and the waveform changes between conventional 
parameters (a, b, c) and optimal parameters (d) are compared, as shown in Figure 3. Analysis of 
Figure 3 reveals that prior to the frequency disturbance (t=0+), the output power ΔPe of the doubly 
fed inverter is zero. This indicates that at the initial moment of sudden system frequency change, the 
DFIG cannot provide instantaneous power support and thus does not affect the system's maximum 
rate of change of frequency (RoCoF) following the power disturbance. The high-pass characteristic of 
the DFIG's frequency response causes the output power ΔPe to converge to zero (as shown in 
Equation (19)). 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝛥𝛥𝑃𝑃𝑒𝑒(0+) = 𝑙𝑙𝑙𝑙𝑙𝑙

𝑠𝑠→∞
𝑠𝑠𝑃𝑃𝑒𝑒,0

�� 𝑃𝑃𝑠𝑠𝛺𝛺𝑚𝑚
− 𝐹𝐹� − 2𝐻𝐻𝐻𝐻� �𝑠𝑠 +

𝐸𝐸0𝑈𝑈𝑔𝑔
𝑋𝑋𝑠𝑠

� 𝑠𝑠2

𝑠𝑠2𝐶𝐶𝜔𝜔(𝑠𝑠)𝐶𝐶𝑝𝑝(𝑠𝑠) = 0

𝛥𝛥𝑃𝑃𝑒𝑒(∞) = 𝑙𝑙𝑙𝑙𝑙𝑙
𝑠𝑠→0

𝑠𝑠𝑃𝑃𝑒𝑒,0

�� 𝑃𝑃𝑠𝑠𝛺𝛺𝑚𝑚
− 𝐹𝐹� − 2𝐻𝐻𝐻𝐻� �𝑠𝑠 +

𝐸𝐸0𝑈𝑈𝑔𝑔
𝑋𝑋𝑠𝑠

� 𝑠𝑠2

𝑠𝑠2𝐶𝐶𝜔𝜔(𝑠𝑠)𝐶𝐶𝑝𝑝(𝑠𝑠) = 0

(19) 

Therefore, the doubly-fed converter does not affect the final steady-state frequency deviation of 
the system. Regarding the impact on the maximum frequency deviation (Nadir) and frequency 
recovery, during the dynamic process following a disturbance (t>5s), the doubly-fed converter 
outputs power ΔPe with opposite polarity to the system frequency deviation Δf. This helps suppress 
frequency decline and promotes frequency recovery, benefiting the system. 

 

 
Figure 3: Model Comparison Results for Systems with Different Control Gain Design Frequencies: (a) 
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𝑘𝑘𝑝𝑝,𝑤𝑤 = 2.796, 𝑘𝑘𝑖𝑖,𝑤𝑤 = 0.977; (b) 𝑘𝑘𝑝𝑝,𝜔𝜔 = 5.99,𝑘𝑘𝑖𝑖,𝜔𝜔 = 3.909; (c) 𝑘𝑘𝑝𝑝,𝜔𝜔 = 11.184, 𝑘𝑘𝑖𝑖,𝜔𝜔 = 5.6365; (d) 𝑘𝑘𝑝𝑝,𝜔𝜔 =
80.158, 𝑘𝑘𝑖𝑖,𝜔𝜔 = 2.2735 

3.2 Optimal Parameter Comparison 
The speed-ring control coefficient critically influences dynamic frequency support capability and 

captured wind energy. If set excessively high, it may induce significant power fluctuations under 
small Δf conditions, potentially causing the DFIG to release excessive rotational energy [23]. 
Therefore, overly high parameters are not discussed. As shown in Figure 3, the optimal parameter 
model (Figure d) exhibits only half the overshoot of other parameter sets (Figures a, b, c), with 
minimal oscillatory fluctuations and steady-state error approaching zero. By balancing the ratio of 𝑘𝑘𝑝𝑝 
and 𝑘𝑘𝑖𝑖, a Pareto optimal solution is achieved in terms of speed, stability, and accuracy. This enables 
the doubly-fed wind turbine to rapidly provide active power support during grid frequency 
disturbances while avoiding abrupt power changes that exacerbate system oscillations, thereby 
complying with grid codes (e.g., IEEE 1547). 
 
4. DFIG Frequency Response Model Validation  
4.1 Key Links Affecting DFIG Frequency Response 

The dynamic response characteristics of the DFIG to frequency perturbations depend on the 
coupling of the intrinsic parameters of its motor body with the behaviour of the control system. As 
shown in Eq. (17) and Fig. 2, the system frequency deviation significantly affects the electromagnetic 
power output of the DFIG by acting on the internal potential and stator self-inductance in the PLL 
coordinate system. By compensating the rotor current dynamics, the frequency coupling effects 
introduced by the PLL are eliminated, thereby improving system stability. Introducing compensation 
before the PI controller nearly completely eliminates the frequency coupling effects [24]. It is worth 
noting that the dynamic term in the model characterizing the effect of frequency deviation originates 
from the correlation effect introduced during the linearization of the rotational power relation 
Ps/ωg=Pe/ωm. 

When the system frequency is perturbed, the change in the output power of DFIG will lead to a 
power imbalance in the rotor shaft system, which in turn triggers a dynamic change in the rotor 
rotational speed, a process that directly triggers the regulating effect of the speed control loop [25]. At 
the same time, the grid frequency deviation will drive the PLL to perform a resynchronization 
operation, forcing the PLL coordinate system to realign with the grid voltage phase. The coordinated 
action of the PLL and the speed control loop realizes the dynamic adjustment of the electromagnetic 
power and the rotor speed through the adjustment of the power angle [26]. During this adjustment 
process, the output power of the DFIG exhibits transient fluctuation characteristics, and its dynamic 
behaviour can be characterized by the frequency response model described in Eq. (19). It should be 
noted that the evolution of the potential power angle within the DFIG is determined by both the PLL 
and the speed loop: the PLL provides transient phase tracking for fast response to frequency 
deviations, while the speed loop maintains the power balance at the new slew rate through 
steady-state speed adjustment. 
 
4.2 The Impact of the Speed Loop on the Model 

Figure 4a, b, c, and d correspond to model simulation results with proportional coefficients of 20, 
40, 60, and 80, respectively, and an integral coefficient of 2.2735. The figures reveal that power 
disturbances and oscillation amplitudes decrease as parameters approach optimal values, exhibiting a 
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diminishing trend. Increasing the proportional coefficient while keeping the integral coefficient 
constant typically enhances the dynamic response speed of DFIG speed-loop control systems, 
enabling faster suppression of external disturbances (e.g., wind speed variations, grid fluctuations). 
This observation successfully validates the model's accuracy, aligning with practical conditions. 

 

 

 

Figure 4: Different Gain Models. 

Figures 5a, b, c, and d correspond to model simulation results with integral coefficients of 20, 40, 
60, and 80, respectively, and a proportional coefficient of 80.158. The figures reveal that power 
disturbances decrease as the parameters approach the optimal values, exhibiting a diminishing trend. 
In the speed loop, the proportional coefficient determines the system's initial response speed, while 
the integral coefficient primarily serves for later correction. If unchanged, the system's initial 
disturbance rejection capability is mainly determined by the proportional coefficient; increasing the 
integral coefficient does not significantly improve dynamic performance. The lagging nature of 
integral control: The integral term requires time to accumulate error. Therefore, during the initial 
phase of disturbance occurrence (e.g., sudden wind speed changes), the integral effect has not yet 
fully manifested, and the disturbance's impact is still primarily determined by the proportional 
coefficient. This behaviour also aligns with real-world conditions. 

 

 
Figure 5: Different Integral Gain Models. 

 
4.3 The Impact of the PLL Loop on the Model 

The bandwidth of the PLL directly determines its proportional and integral coefficients. When 
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the PLL bandwidth is 0.5 Hz, the proportional and integral coefficients of the phase-locked PI 
controller are 4.443 and 9.87, respectively; when the bandwidth is 1 Hz, they are 8.886 and 39.478, 
respectively; At a bandwidth of 1.5 Hz, the proportional and integral coefficients of the phase-locked 
PI controller are 13.329 and 88.826, respectively; at a bandwidth of 2 Hz, they are 17.772 and 157.913. 
Figures 6a, b, c, and d represent the PLL bandwidth models at 0.5, 1, 1.5, and 2 Hz, respectively. As 
shown in Figure 6, as the PLL bandwidth increases, the model's oscillation and recovery time 
decrease, and its disturbance resistance strengthens. 

 

 
Figure 6: Different PLL Bandwidth Models. 

 
5. Influence of DFIG Frequency Response on System Frequency Dynamics 

The DFIG achieves the output power control by controlling the rotational speed and the 
synchronization of the d and q coordinate systems. When the controller parameters are taken at 
reasonable values, it will be beneficial to reduce the maximum frequency deviation, and the effect of 
this frequency response model is analyzed in the following for different system inertia. The frequency 
response model is shown in Figure 7. In the figure: 𝛥𝛥𝛥𝛥 is the active power disturbance in the power 
system; 𝐻𝐻𝑠𝑠 is the system inertia; 𝑘𝑘𝐷𝐷 and 𝑘𝑘𝐺𝐺/(𝜏𝜏𝜏𝜏 + 1)  characterize the frequency characteristics of 
the load and generator, respectively, while the branch in the dashed box characterizes the frequency 
response characteristics of the DFIG, where 𝑘𝑘𝐷𝐷is the frequency regulation effect coefficient of the load, 
𝑘𝑘𝐺𝐺 is the regulation coefficient, and 𝜏𝜏  is the delay coefficient of the corresponding frequency 
fluctuation of the governor. 

 
Figure 7: The Frequency Response Model. 

Figure 8(a) and (b) compare the frequency response curves of the system before and after 
whether the DFIG characteristics are considered at different values of H. From the figure, when the 
inertia of the system is large, the frequency response characteristics of DFIG have little effect on the 
system frequency dynamics; however, when the inertia of the system is small, the effect of DFIG on 
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the frequency dynamic characteristics of the system is not negligible. For example, when Hs = 9, 
whether or not to consider the DFIG characteristics of the analyzed system frequency characteristics 
of the influence is not significant; and when Hs = 3, after considering the DFIG characteristics of the 
system, the actual maximum frequency difference is 5.555 * 10e + 06VA, compared with the 
non-consideration of the system's 6.904 * 10e + 06VA, a decrease of 19.54%. For the system with low 
inertia, ignoring the DFIG characteristics will make the analysis of the frequency dynamic 
characteristics of the power system have a large deviation, which will lead to the assessment of the 
power system inertia demand deviation from the actual situation. 
 

 
Figure 8(a): Hs=3 

 
Figure 8(b): Hs=9 

 
6. Conclusion 

This paper presents a dynamic model of DFIG that responds to system frequency disturbances 
using only global frequency disturbance information as input. A genetic algorithm was employed to 
optimize the speed loop parameters, and the results were compared with those obtained using 
conventional parameters. Based on this optimized model, an in-depth study of the DFIG's frequency 
response was conducted, revealing that its response mechanism stems from the cascaded coupling 
effects between PLL and the outer-loop controller (particularly the speed loop). Its response 
characteristics exhibit fundamental differences from the inertial response of traditional synchronous 
machines. The main conclusions are as follows: 

(1) The frequency response of DFIG is mainly affected by the cascading effect of PLL and speed 
control loop. The frequency response of DFIG is mainly dominated by the cascading effect of PLL and 
speed control loop. Reducing the bandwidth of PLL or speed control loop will weaken DFIG's ability 
to resist frequency disturbance. 

(2) Changes in system frequency will cause fluctuations in its slope and power output. Through 
closed-loop control, the PLL and speed loop resynchronize after disturbances to adapt to the new 
system frequency and mitigate the negative impact of frequency disturbances on output power. 

(3) The frequency response of the DFIG exhibits a high-pass characteristic: it generates a response 
only in the transient phase of the system frequency change (i.e., when there exists a rate of change); 
when the system frequency reaches the steady state (even if there exists a steady state frequency 
difference), its response output decays to zero. Critically, the change in output power, ΔPe, is not 
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proportional to the system RoCoF. Therefore, this response characteristic does not belong to the 
conventional inertial response and does not contribute to the improvement of the maximum RoCoF at 
the onset of the perturbation (t=0+). 

(4) During the dynamic change of system frequency, the DFIG can provide a short-time active 
power output with opposite polarity to the frequency deviation Δf. This characteristic is beneficial for 
system frequency recovery, especially in low-inertia systems, and should not be ignored. The 
frequency response of the DFIG helps to improve the maximum frequency nadir of the system when 
the controller parameters are properly configured. 

(5) The optimized parameter model can effectively reduce oscillations and recovery time, greatly 
reducing the impact of frequency disturbances on output power. 
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