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Abstract: For the problem of bandwidth selection in nonparametric regression, most of the 
existing methods carried out theoretical analysis and numerical calculation with a fixed 
bandwidth. However, the selection of an appropriate bandwidth and the guarantee of good 
performance depend heavily on the parameters of the smoothness of regression function, which 
are difficult to calculate in practice. To overcome this problem, a novel and efficient data-driven 
selecting rule is proposed to adaptively determine the appropriate bandwidth. It turns out that 
the bandwidth only loses the ln𝑛𝑛 factor in terms of convergence rate by selecting rule. 
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1. Introduction 

The goal of this paper is to propose a data-driven selecting rule to adaptively determine the 
appropriate bandwidth. Firstly, we estimate a regression function 𝑚𝑚  from independent and 
identically distributed (i.i.d) data (𝑊𝑊𝑗𝑗 ,𝑌𝑌𝑗𝑗)(𝑗𝑗 = 1,2, . . . ,𝑛𝑛)  generated by the model 

Y = m(X) + ε, W = X + B ⋅ δ (1) 
where 𝑋𝑋 stands for a real-valued random variable with unknown probability density  
𝑓𝑓 on 𝑅𝑅𝑑𝑑, 𝛿𝛿 denotes an independent random noise with the probability density 𝑔𝑔 and 𝜀𝜀 ∈ {0,1} 

Bernoulli random variable with 𝑃𝑃(𝐵𝐵 = 1) = 𝛼𝛼, 𝛼𝛼 ∈ [0,1]. 
When 𝛼𝛼 = 1, Eq. (1) reduces to the deconvolution model. For the study of errors-in-variables, 

Meister [1] studied regression estimation with one-dimensional data through kernel method. Guo [2] 
et al. extended Meister’s theorems and studied the optimal convergence rate of the estimator with 
additive noise.  

While 𝛼𝛼 = 0, Eq. (1) corresponds to the traditional regression model. Bouzebda [3] studied the 
bandwidth consistency of the kernel-type estimator in the case of weaker  

kernel conditions and extended existing uniform bounds on kernel regression estimator. Pinelis 
[4] considered three common classes of kernel regression estimators and proved related properties. 
Ail [5] proposed a new improvement of the Nadaraya-Watson kernel nonparametric regression 
estimator. The bandwidth of this new improvement was obtained depending on the three different 
statistical indicators. Including comparisons with four others kernel estimators. The proposed 
estimator in the case of harmonic mean is more accurate than all classical methods. 

Clearly, the density ℎ𝑤𝑤 of 𝑊𝑊 in Eq. (1) satisfies 
ℎ𝑤𝑤 = (1 − 𝛼𝛼)𝑓𝑓 + 𝛼𝛼𝛼𝛼 ∗ 𝑔𝑔 (2) 

because 𝑃𝑃{𝑊𝑊 < 𝑡𝑡} = 𝑃𝑃{𝐵𝐵 = 0}𝑃𝑃{𝑋𝑋 + 𝐵𝐵 ⋅ 𝛿𝛿|𝐵𝐵=0 < 𝑡𝑡} + 𝑃𝑃{𝐵𝐵 = 1}𝑃𝑃{𝑋𝑋 + 𝐵𝐵 ⋅ 𝛿𝛿|𝐵𝐵=1 < 𝑡𝑡} = (1 −
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𝛼𝛼)𝑃𝑃{𝑋𝑋 < 𝑡𝑡} + 𝛼𝛼𝛼𝛼{𝑋𝑋 + 𝛿𝛿 < 𝑡𝑡}. Furthermore, 
𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡) = [(1 − 𝛼𝛼) + 𝛼𝛼𝑔𝑔𝑓𝑓𝑓𝑓(𝑡𝑡)]−1ℎ𝑤𝑤

𝑓𝑓𝑓𝑓(𝑡𝑡): = 𝐺𝐺𝛼𝛼−1(𝑡𝑡)ℎ𝑤𝑤
𝑓𝑓𝑓𝑓(𝑡𝑡). 

when the function 
𝐺𝐺𝛼𝛼(𝑡𝑡) = 1 − 𝛼𝛼 + 𝛼𝛼𝑔𝑔𝑓𝑓𝑓𝑓(𝑡𝑡) 

has nonzero on 𝑅𝑅𝑑𝑑, where 𝑓𝑓𝑓𝑓𝑓𝑓 is the Fourier transform of 𝑓𝑓 ∈ 𝐿𝐿1(𝑅𝑅𝑑𝑑) defined by 

𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡): = � 𝑓𝑓(𝑥𝑥)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑
𝑅𝑅𝑑𝑑

. 

To estimate the regression function, we need the assumption of function space [4]. 
𝜁𝜁𝑥𝑥,𝑠𝑠 = {(𝑚𝑚, 𝑓𝑓𝑋𝑋)|‖𝑓𝑓𝑋𝑋‖∞ + ‖𝑚𝑚2𝑓𝑓𝑋𝑋‖∞ ≤ 𝐶𝐶1,𝑚𝑚𝑓𝑓𝑋𝑋 ∈ 𝐿𝐿(𝑅𝑅𝑑𝑑); 𝑓𝑓𝑋𝑋(𝑥𝑥) ≥ 𝐶𝐶2; } (1.3) 
𝑓𝑓𝑋𝑋 and 𝑚𝑚𝑓𝑓𝑋𝑋 satisfy local Holder condition of order 𝑠𝑠 at 𝑥𝑥 ∈ 𝑅𝑅𝑑𝑑  for some positive constants 

𝐶𝐶1,𝐶𝐶2 > 0. A function 𝑓𝑓 is said to satisfy local Holder condition of order𝑠𝑠, if there exists a constant 
𝐶𝐶 > 0 such that for each 𝛽𝛽 with |𝛽𝛽| = ⌊𝑠𝑠⌋, 

�𝜕𝜕𝛽𝛽𝑓𝑓(𝑦𝑦) − 𝜕𝜕𝛽𝛽𝑓𝑓(𝑧𝑧)� ≤ 𝐶𝐶|𝑦𝑦 − 𝑧𝑧|𝑠𝑠−|𝛽𝛽|for𝑦𝑦, 𝑧𝑧 ∈ 𝑄𝑄(𝑥𝑥, 𝑟𝑟) 
where 𝑄𝑄(𝑥𝑥, 𝑟𝑟): = {𝑦𝑦 = (𝑦𝑦1,𝑦𝑦2, . . . ,𝑦𝑦𝑑𝑑)|𝑦𝑦𝑖𝑖 ∈ (𝑥𝑥𝑖𝑖 − 𝑟𝑟, 𝑥𝑥𝑖𝑖 + 𝑟𝑟), 𝑖𝑖 = 1,2, . . . ,𝑑𝑑}with 𝑟𝑟 > 0. 
For the research of data-driven, Wu et al. [6] used a linear wavelet estimator to obtain a 

point-wise optimal estimation. Then they used a data-driven method to obtaining adaptive and 
near-optimal estimation and showed the logarithmic factor necessary to get the adaptivity. Kong et al. 
[7] proposed the local polynomial regression based on bimodal kernels for the derivative estimation 
under correlated errors. Based on the asymptotic mean integrated squared error, they also provided a 
data-driven bandwidth selection criterion. 

Unlike traditional research, Chen [8] constructed a linear wavelet estimator of the anisotropic 
regression function, and proposed a regression estimator based on the scale parameter data-driven 
selection rule. It turned out that results attain the optimal convergence rate of nonparametric 
pointwise estimation. Kim et al. [9] studied selecting the number of change points in segmented line 
regression and proposed a new method based on two Schwarz type criteria. The proposed method is 
computationally much more efficient than previous ones. For l(0) penalized (nonlinear) regression 
problems, Li [10] proposed a novel and efficient data-driven line search rule to adaptively determine 
the appropriate step size based on the idea of support detection and root finding. Liu [11]-[12] 
provided a new data-driven bandwidth selection method for kernel quantile estimators. The 
effectiveness of this rule is confirmed by numerical experiments. Bagkavos [13] studied asymptotic 
consistency and distribution of the practically useful (data-driven) version of the bandwidth rule. The 
potential of the method as a data-analytic tool is illustrated by application. El-Dakkak [14] studied 
probabilistic models with adaptive algorithms that accurately fit wind speed distributions and a 
non-parametric combinatorial method is implemented. It is worthwhile mentioning that the 
implemented procedure is adaptive (i.e. data driven) and robust. Wylupek [15] developed a new 
solution of the general nonparametric k-sample problem for independent continuous random 
variables. They solved the testing problem for members of this approximating net by a data-driven 
test. Simulations show that the new omnibus test has power comparable to existing k-sample tests in 
case of changes of location or scale. 

 
2. Data-Driven 

In this section, we use data-driven rule to select a optimal bandwidth ℎ and only lose the ln𝑛𝑛 
factor in terms of convergence rate. 

We introduce some notations used frequently later on. 
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For two variables 𝐴𝐴  and 𝐵𝐵 , A ≲ B  denotes 𝐴𝐴 ≤ 𝐶𝐶𝐶𝐶  for some positive constant 𝐶𝐶 . A ≳ B 
means A ≲ B. We use 𝐴𝐴 ∼ 𝐵𝐵 to stand for both A ≲ B and B ≲ A. 

We introduce some lemmas used later on. 
Lemma 1 (Bernstein inequality) Let 𝑖𝑖. 𝑖𝑖.𝑑𝑑  data 𝑋𝑋1, . . . ,𝑋𝑋𝑛𝑛  satisfy 𝐸𝐸𝑋𝑋𝑖𝑖 = 0  and |𝑋𝑋𝑖𝑖| ≤ ‖𝑋𝑋‖∞ . 

Then 

𝑃𝑃|
1
𝑛𝑛
�𝑋𝑋𝑖𝑖

𝑛𝑛

𝑖𝑖=1

| ≥ 𝛾𝛾 ≤ 2 exp( −
𝑛𝑛𝛾𝛾2

2[𝐸𝐸𝑋𝑋𝑖𝑖2 + ‖𝑋𝑋‖∞𝛾𝛾/3]
). 

The regression kernel estimator is defined by 

𝑚𝑚ℎ� (𝑥𝑥) =
𝑝̂𝑝ℎ(𝑥𝑥)
𝑓𝑓ℎ(𝑥𝑥)

=
∑ 𝑌𝑌𝑗𝑗 ∫ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝐾𝐾𝑓𝑓𝑓𝑓(ℎ𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖𝜔𝜔𝑗𝑗/𝐺𝐺𝛼𝛼(𝑡𝑡)𝑅𝑅𝑑𝑑
𝑛𝑛
𝑗𝑗=1 𝑑𝑑𝑑𝑑
∑ ∫ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝐾𝐾𝑓𝑓𝑓𝑓(ℎ𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖𝜔𝜔𝑗𝑗/𝐺𝐺𝛼𝛼(𝑡𝑡)𝑅𝑅𝑑𝑑 𝑑𝑑𝑑𝑑𝑛𝑛
𝑗𝑗=1

. 

Lemma 2 Let 𝑝𝑝: = 𝑚𝑚𝑓𝑓𝑋𝑋 with |𝑚𝑚(𝑥𝑥)| < +∞ and 𝑓𝑓(𝑥𝑥) > 0. Then 𝑚𝑚�(𝑥𝑥) defined in above satisfies 
that 

𝑃𝑃[|𝑚𝑚�(𝑥𝑥) −𝑚𝑚(𝑥𝑥)|2 > 𝜀𝜀] ≤ 𝑃𝑃[|𝑝̂𝑝(𝑥𝑥) − 𝑝𝑝(𝑥𝑥)|2 ≳ 𝜀𝜀] + 𝑃𝑃[|𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑥𝑥)|2 ≳ 𝜀𝜀] 
for 𝜀𝜀 > 0 small enough. 
Then we have proved the following result. 

Lemma 3 For ℎ1 = 2−𝑘𝑘0 ∼ 𝑛𝑛−
1

2𝑠𝑠+2𝛽𝛽(𝛼𝛼)+𝑑𝑑, 𝑘𝑘0 ∈ 𝑁𝑁 and 1 ≤ 𝑝𝑝 < ∞,  

lim
𝑐𝑐→∞

lim
𝑛𝑛→∞

𝑠𝑠𝑠𝑠𝑠𝑠𝑃𝑃[�𝑚𝑚ℎ1� (𝑥𝑥) −𝑚𝑚(𝑥𝑥)�2 ≥ 𝑐𝑐𝑛𝑛−
2𝑠𝑠

2𝑠𝑠+2β(α)+d ] = 0. 

Lemma 4 Since 𝑊𝑊1,𝑊𝑊2, . . . ,𝑊𝑊𝑛𝑛 are i.i.d., the variance term 

𝑉𝑉𝑉𝑉𝑉𝑉𝑓𝑓(𝑥𝑥) ≤ (2𝜋𝜋)−2𝑑𝑑𝑛𝑛−1𝐸𝐸 �� 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝐾𝐾𝑓𝑓𝑓𝑓(ℎ𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖𝑊𝑊1/𝐺𝐺𝛼𝛼(𝑡𝑡)
𝑅𝑅𝑑𝑑

𝑑𝑑𝑑𝑑�
2

 

= (2𝜋𝜋)−2𝑑𝑑𝑛𝑛−1 � �� 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝐾𝐾𝑓𝑓𝑓𝑓(ℎ𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖/𝐺𝐺𝛼𝛼(𝑡𝑡)
𝑅𝑅𝑑𝑑

𝑑𝑑𝑑𝑑�
2

ℎ𝑤𝑤(𝑤𝑤)𝑑𝑑𝑑𝑑
𝑅𝑅𝑑𝑑

. 

By 𝑧𝑧 = 𝑥𝑥 − 𝑤𝑤,𝑉𝑉𝑉𝑉𝑉𝑉𝑓𝑓(𝑥𝑥) ≤ (2𝜋𝜋)−2𝑑𝑑𝑛𝑛−1 ∫ �∫ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝐾𝐾𝑓𝑓𝑓𝑓(ℎ𝑡𝑡)/𝐺𝐺𝛼𝛼(𝑡𝑡)𝑅𝑅𝑑𝑑 𝑑𝑑𝑑𝑑�2𝑅𝑅𝑑𝑑 ℎ𝑤𝑤(𝑥𝑥 − 𝑧𝑧)𝑑𝑑𝑑𝑑. By (𝑚𝑚, 𝑓𝑓𝑋𝑋) ∈ 𝜁𝜁𝑥𝑥,𝑠𝑠, 

‖𝑓𝑓𝑋𝑋‖∞ ≤ 𝐶𝐶1 and ‖𝑓𝑓𝑋𝑋 ∗ 𝑔𝑔‖∞ ≤ ‖𝑓𝑓𝑋𝑋‖∞‖𝑔𝑔‖1 ≤ 𝐶𝐶1‖𝑔𝑔‖1. 
Hence, 

𝑉𝑉𝑉𝑉𝑉𝑉𝑓𝑓(𝑥𝑥) ≲ (2𝜋𝜋)−2𝑑𝑑𝑛𝑛−1 � �� 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝐾𝐾𝑓𝑓𝑓𝑓(ℎ𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖𝑊𝑊1/𝐺𝐺𝛼𝛼(𝑡𝑡)
𝑅𝑅𝑑𝑑

𝑑𝑑𝑑𝑑�
2

𝑅𝑅𝑑𝑑
𝑑𝑑𝑑𝑑 

Moreover, the above inequality becomes to 

𝑉𝑉𝑉𝑉𝑉𝑉𝑓𝑓(𝑥𝑥) ≲ n−1 � �Kft(ht)/G𝛼𝛼(t)�2
[−1/h,1/h]d

dt 

thanks to Parseval identity and supp 𝐾𝐾𝑓𝑓𝑓𝑓 ⊂ [−1,1]𝑑𝑑. Because |𝐺𝐺𝛼𝛼(𝑡𝑡)| ≳ (1 + t2)−
𝛽𝛽(𝛼𝛼)
2 ,𝑉𝑉𝑉𝑉𝑉𝑉𝑓𝑓(𝑥𝑥) ≲

𝑛𝑛−1ℎ−(2𝛽𝛽(𝛼𝛼)+𝑑𝑑). 
In order to introduce data-driven, denote ℎ, ℎ∗: = max{ ℎ,ℎ∗} and 

𝜇̂𝜇ℎ ≔ 𝜆𝜆�
ℎ−(2𝛽𝛽(𝛼𝛼)+𝑑𝑑) ln𝑛𝑛

𝑛𝑛
(3) 

with the constant 𝜆𝜆 specified late on. 
Let 𝛺𝛺: = {2−𝑘𝑘, . . . , 2−1, 1}, 𝑘𝑘 = 𝑚𝑚𝑚𝑚𝑚𝑚{k ⋅ 2k ≤ n}, 𝑥𝑥+: = max{ 0, 𝑥𝑥}, and the ℎ0  be defined by the 

following rule. 
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𝜉𝜉ℎ� (𝑥𝑥0): = 𝑚𝑚𝑚𝑚𝑚𝑚[�𝑚𝑚�ℎ,ℎ∗(𝑥𝑥0) −𝑚𝑚�ℎ∗(𝑥𝑥0)� − 𝜇𝜇ℎ∗� − 𝜇𝜇ℎ�]+ 
𝜉𝜉ℎ0(𝑥𝑥0) + 2𝜇̂𝜇ℎ0: = 𝑚𝑚𝑚𝑚𝑚𝑚[𝜉𝜉ℎ(𝑥𝑥0) + 2𝜇̂𝜇ℎ] 

Theorem 1 For ℎ0 given as above, 

lim
𝑐𝑐→∞

lim
𝑛𝑛→∞

𝑠𝑠𝑠𝑠𝑠𝑠𝑃𝑃[�𝑚𝑚ℎ0� (𝑥𝑥) −𝑚𝑚(𝑥𝑥)�2 ≥ 𝑐𝑐(𝑙𝑙𝑙𝑙𝑙𝑙)𝑛𝑛−
2𝑠𝑠

2𝑠𝑠+2β(α)+d (4) 

Proof Let ℎ1 be given in Lemma 3. Then 

lim
𝑐𝑐→∞

lim
𝑛𝑛→∞

𝑠𝑠𝑠𝑠𝑠𝑠𝑃𝑃[�𝑚𝑚ℎ1� (𝑥𝑥) −𝑚𝑚(𝑥𝑥)�2 ≥ 𝑐𝑐𝑛𝑛−
2𝑠𝑠

2𝑠𝑠+2β(α)+d (5) 

By (i) and (ii), �𝑚𝑚�ℎ1,ℎ0 − 𝑚𝑚�ℎ0� + �𝑚𝑚�ℎ1,ℎ0 − 𝑚𝑚�ℎ1� ≤ (𝜉𝜉ℎ1� + 𝜇𝜇ℎ0� + 𝜇𝜇ℎ1� ) + (𝜉𝜉ℎ0� + 𝜇𝜇ℎ0� + 𝜇𝜇ℎ1� ) = (𝜉𝜉ℎ0� +
2𝜇𝜇ℎ0� ) + (𝜉𝜉ℎ1� + 2𝜇𝜇ℎ1� ) ≤ 2(𝜉𝜉ℎ1� + 2𝜇𝜇ℎ1� ) ≲ 𝜉𝜉h1� + 𝜇𝜇h1� . 

According to Eq. (3) and the choice of ℎ1, 𝜇̂𝜇2ℎ1 ≲ (𝑙𝑙𝑙𝑙𝑙𝑙)𝑛𝑛−
2𝑠𝑠

2𝑠𝑠+2β(α)+d . On the other hand,�𝑚𝑚�ℎ1 −

𝑚𝑚�2is estimated by Lemma 3. Hence, it suffices for the desired conclusion Eq. (4) to show  

lim
𝑐𝑐→∞

lim
𝑛𝑛→∞

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝜉𝜉ℎ1�
2 ≥ 𝑐𝑐(𝑙𝑙𝑙𝑙𝑙𝑙)𝑛𝑛−

2𝑠𝑠
2𝑠𝑠+2β(α)+d � = 0 (6) 

Note that𝑚𝑚�ℎ1,ℎ∗ = 𝑚𝑚�ℎ∗for ℎ∗ ≥ ℎ1and 𝑚𝑚�ℎ1,ℎ∗ = 𝑚𝑚�ℎ1  for ℎ∗ < ℎ1. Then𝜉𝜉ℎ1� = 𝑚𝑚𝑚𝑚𝑚𝑚(�𝑚𝑚�ℎ1,ℎ∗ − 𝑚𝑚�ℎ∗� −
𝜇𝜇ℎ∗� − 𝜇𝜇ℎ1� )+ = 𝑚𝑚𝑚𝑚𝑚𝑚(�𝑚𝑚�ℎ1,ℎ∗ − 𝑚𝑚�ℎ∗� − 𝜇𝜇ℎ∗� − 𝜇𝜇ℎ1� )+. Moreover, 

𝜉𝜉ℎ1� ≤ 𝑚𝑚𝑚𝑚𝑚𝑚(�𝑚𝑚�ℎ1 − 𝑚𝑚| + |𝑚𝑚 −𝑚𝑚�ℎ∗� − 𝜇𝜇ℎ∗� − 𝜇𝜇ℎ1� )+ 
On the other hand, (𝑓𝑓 + 𝑔𝑔 + ℎ)+ ≤ 𝑓𝑓+ + 𝑔𝑔+ + ℎ+. Hence, 

𝜉𝜉ℎ1� ≤ (�𝑚𝑚�ℎ1 − 𝑚𝑚� − 𝜇̂𝜇ℎ1)+ + 𝑚𝑚𝑚𝑚𝑚𝑚(�𝑚𝑚 − 𝑚𝑚�ℎ∗� − 𝜇̂𝜇ℎ∗)+. 
Furthermore, we only need to prove that for ℎ ∈ 𝛺𝛺 and 2−𝑘𝑘 ≤ ℎ ≤ ℎ1,  

Lim
𝑐𝑐→∞

lim
𝑛𝑛→∞

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �(|𝑚𝑚�ℎ − 𝑚𝑚| − 𝜇̂𝜇ℎ)+ ≥
𝑐𝑐
2

(𝑙𝑙𝑙𝑙𝑙𝑙)
1
2𝑛𝑛−

𝑠𝑠
2𝑠𝑠+2β(α)+d � = 0 (7) 

According to Lemma 2 and Eq. (3) 

lim
𝑐𝑐→∞

lim
𝑛𝑛→∞

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[(|𝑝̂𝑝ℎ(𝑥𝑥) − 𝑝𝑝(𝑥𝑥)|) ≥ 𝑐𝑐𝐶𝐶1𝜇̂𝜇ℎ] + 𝑃𝑃[(�𝑓𝑓ℎ(𝑥𝑥) − 𝑓𝑓(𝑥𝑥)�) ≥ 𝑐𝑐𝐶𝐶1𝜇̂𝜇ℎ] = 0. 

For the |𝑓𝑓ℎ(𝑥𝑥) − 𝑓𝑓(𝑥𝑥)|, one knows that 
|𝑓𝑓ℎ(𝑥𝑥) − 𝑓𝑓(𝑥𝑥)| = |𝑓𝑓ℎ(𝑥𝑥) − 𝐸𝐸𝑓𝑓ℎ + 𝐸𝐸𝑓𝑓ℎ − 𝑓𝑓(𝑥𝑥)| ≤ �𝑓𝑓ℎ(𝑥𝑥) − 𝐸𝐸𝑓𝑓ℎ� + �𝐸𝐸𝑓𝑓ℎ − 𝑓𝑓(𝑥𝑥)�. 

Hence,  
𝑃𝑃[|𝑓𝑓ℎ� (𝑥𝑥) − 𝑓𝑓(𝑥𝑥)| ≥ 𝑐𝑐𝐶𝐶1𝜇𝜇ℎ�] ≤ 𝑃𝑃[|𝑓𝑓ℎ� (𝑥𝑥) − 𝐸𝐸𝑓𝑓ℎ� (𝑥𝑥)| ≥ 𝑐𝑐𝐶𝐶1𝜇𝜇ℎ�] + 𝑃𝑃[|𝐸𝐸𝑓𝑓ℎ� (𝑥𝑥) − 𝑓𝑓(𝑥𝑥)| ≥ 𝑐𝑐𝐶𝐶1𝜇𝜇ℎ�] 

By the proof of Theorem 1, |𝐸𝐸𝑓𝑓ℎ� (𝑥𝑥) − 𝑓𝑓(𝑥𝑥)| ≤ 𝐶𝐶2ℎ𝑠𝑠 ≤ 𝐶𝐶2ℎ1𝑠𝑠 = 𝐶𝐶2𝑛𝑛
− 𝑠𝑠
2𝑠𝑠+2𝛽𝛽(𝛼𝛼)+𝑑𝑑 

lim
𝑐𝑐→∞

lim
𝑛𝑛→∞

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[(�𝐸𝐸𝐸𝐸�ℎ(𝑥𝑥) − 𝑓𝑓(𝑥𝑥)�) ≥ 𝑐𝑐𝐶𝐶1𝜇̂𝜇ℎ] = 0. 

According to the definition of 𝑓𝑓ℎ(𝑥𝑥),  

𝑓𝑓ℎ(𝑥𝑥) =
1
𝑛𝑛
��

𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝐾𝐾𝑓𝑓𝑓𝑓(ℎ𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖𝜔𝜔𝑗𝑗

𝐺𝐺𝛼𝛼(𝑡𝑡)𝑑𝑑𝑑𝑑𝑅𝑅𝑑𝑑

𝑛𝑛

𝑗𝑗=1

 

and 𝑓𝑓ℎ(𝑥𝑥) − 𝐸𝐸𝑓𝑓ℎ(𝑥𝑥) = 1
𝑛𝑛
∑ 𝑀𝑀𝑗𝑗
𝑛𝑛
𝑗𝑗=1  with  

𝑀𝑀𝑗𝑗 ≔ �
𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝐾𝐾𝑓𝑓𝑓𝑓(ℎ𝑡𝑡)�𝑒𝑒𝑖𝑖𝑖𝑖𝜔𝜔𝑗𝑗 − 𝐸𝐸�𝑒𝑒𝑖𝑖𝑖𝑖𝜔𝜔𝑗𝑗��

𝐺𝐺𝛼𝛼(𝑡𝑡)𝑑𝑑𝑑𝑑𝑅𝑅𝑑𝑑
 

Clearly, {𝑀𝑀𝑗𝑗} are i.i.d and 𝐸𝐸𝑀𝑀𝑗𝑗 = 0. According to lemma 4, it is easy to see that  
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𝐸𝐸𝑀𝑀𝑗𝑗
2 ≤ � ��

𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝐾𝐾𝑓𝑓𝑓𝑓(ℎ𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖𝜔𝜔𝑗𝑗

𝐺𝐺𝛼𝛼(𝑡𝑡)𝑑𝑑𝑑𝑑𝑅𝑅𝑑𝑑
�
2

ℎ𝜔𝜔(𝜔𝜔)𝑑𝑑𝑑𝑑 ≤ 𝐶𝐶3ℎ−(2𝛽𝛽(𝛼𝛼)+𝑑𝑑) 

and �𝑀𝑀𝑗𝑗�∞ ≤ �∫ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝐾𝐾𝑓𝑓𝑓𝑓(ℎ𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖𝜔𝜔𝑗𝑗

𝐺𝐺𝛼𝛼(𝑡𝑡)𝑑𝑑𝑑𝑑𝑅𝑅𝑑𝑑 �
∞
≤ 𝐶𝐶4ℎ−(𝛽𝛽(𝛼𝛼)+𝑑𝑑). Using Lemma 1 and the definition of 𝜇̂𝜇ℎ, one 

knows that 

𝑃𝑃[�𝑓𝑓ℎ(𝑥𝑥) − 𝐸𝐸𝑓𝑓ℎ(𝑥𝑥)� ≥ 𝐶𝐶1𝑐𝑐𝜇̂𝜇ℎ] ≤ 2 exp{ −
𝑛𝑛(𝐶𝐶1𝑐𝑐𝜇̂𝜇ℎ)2

2 �𝐶𝐶3ℎ−(2𝛽𝛽(𝛼𝛼)+𝑑𝑑) + 𝐶𝐶4ℎ−(𝛽𝛽(𝛼𝛼)+𝑑𝑑)𝐶𝐶1𝑐𝑐𝜇̂𝜇ℎ
3 �

} (8) 

Since 𝜇̂𝜇ℎ ≲ 1 thanks to (2.1). Furthermore, 

2 �𝐶𝐶3ℎ−(2𝛽𝛽(𝛼𝛼)+𝑑𝑑) +
𝐶𝐶4ℎ−(𝛽𝛽(𝛼𝛼)+𝑑𝑑)𝐶𝐶1𝑐𝑐𝜇̂𝜇ℎ

3
� ≤ 𝐶𝐶5𝑐𝑐ℎ−(2𝛽𝛽(𝛼𝛼)+𝑑𝑑) 

and (2.6) reduce to 

𝑃𝑃��𝑓𝑓ℎ(𝑥𝑥) − 𝐸𝐸𝑓𝑓ℎ(𝑥𝑥)� ≥ 𝐶𝐶1𝑐𝑐𝜇̂𝜇ℎ� ≤ 2 exp{ −
𝐶𝐶12𝜆𝜆2

𝐶𝐶5
𝑐𝑐(ln𝑛𝑛) 

thanks to (2.1), choose 𝜆𝜆 such that 𝜆𝜆2 > 𝐶𝐶5
𝐶𝐶12

. Then 

lim
𝑐𝑐→∞

lim
𝑛𝑛→∞

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[(�𝑓𝑓ℎ(𝑥𝑥) − 𝐸𝐸𝑓𝑓ℎ�) ≥ 𝑐𝑐𝐶𝐶1𝜇̂𝜇ℎ] = 0. 

Therefore, lim
𝑐𝑐→∞

lim
𝑛𝑛→∞

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[(�𝑓𝑓ℎ(𝑥𝑥) − 𝑓𝑓(𝑥𝑥)�) ≥ 𝑐𝑐𝐶𝐶1𝜇̂𝜇ℎ] = 0 . Similar to 𝑃𝑃[|𝑓𝑓ℎ(𝑥𝑥) − 𝑓𝑓(𝑥𝑥)|] , 

lim
𝑐𝑐→∞

lim
𝑛𝑛→∞

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[(|𝑝̂𝑝ℎ(𝑥𝑥) − 𝑝𝑝(𝑥𝑥)|) ≥ 𝑐𝑐𝐶𝐶1𝜇̂𝜇ℎ] = 0. Finally, it follows Eq. (8) and the choice of ℎ1 that 

lim
𝑐𝑐→∞

lim
𝑛𝑛→∞

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝜉𝜉ℎ1�
2 ≥ 𝑐𝑐(𝑙𝑙𝑙𝑙𝑙𝑙)𝑛𝑛−

2𝑠𝑠
2𝑠𝑠+2β(α)+d � = 0 

 
which Eq. (4). The proof is done. 
In our Theorem 1, the convergence rate is consistent with Theorem 1 in only lose the ln𝑛𝑛 factor 

by data-driven. The data-driven methods of regression estimation and density estimation [6] are 
based on the selection rules of estimators. Due to the particularity of the proof in regression 
estimation, the splitting of m should be after applying the selection rules. 
 
3. Conclusion 

In this paper, we study the regression estimation with generalized additive noise, which includes 
the classical regression estimation and regression estimation with additive noise. However, the 
selection of an appropriate bandwidth and the guarantee of good performance depend heavily on the 
parameters of the smoothness of regression function, which are difficult to calculate in practice. 
Therefore, a novel and efficient data-driven selecting rule is proposed to adaptively determine the 
appropriate bandwidth. It turns out that the bandwidth only loses the ln𝑛𝑛  factor in terms of 
convergence rate by selecting rule. 
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