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Abstract: This paper examines the effects of automatic seeding and fertilization technology on 
the land output rate and cost structure of family farms. Using the activity-based costing 
approach, it develops a theoretical framework of "technology application - operational efficiency 
- cost driver" and performs an empirical analysis with micro-data from 326 family farms. The 
study reveals that this technology substantially enhances the cost structure of family farms via 
labor cost reduction, mechanical cost substitution, and precise material cost management. The 
labor cost share declines from 38.7% to 21.3%, while the mechanical cost proportion rises from 
12.4% to 18.6%. Additionally, fertilizer efficiency increases from 35% to 58%, and seed wastage 
decreases from 18% to 3%. Moreover, the impact of technology application differs based on scale 
and crop type. When the farm area surpasses 300 mu, the substitution effect of mechanical costs 
is notably strengthened; the cost optimization effect for food crops outperforms that of cash 
crops. The study offers a theoretical foundation and practical guidance for family farms to adopt 
refined cost management. 
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1. Introduction 

Family farms, as the cornerstone of large-scale operation in modern agriculture, their cost control 
is directly related to market competitiveness. In recent years, labor costs have been increasing at an 
unprecedented annual rate of 12.3%.[4] The traditional extensive cost management method can no 
longer meet the requirements of modern development, while automatic seeding and fertilization 
technology has reshaped the agricultural production system through precise operation processes, 
providing an innovative way to optimize the cost structure. Currently, academic research mostly 
focuses on the specific empirical analysis of the application effects of this technology [1], but there is 
little systematic research on cost aspects. Existing literature basically adopts the classification form of 
"materials, labor, and expenses"[5], but fails to effectively integrate the quantitative analysis 
framework from the accounting perspective. Based on the activity-based costing method, this study 
constructs a theoretical model of "technology application - operation efficiency - cost driver" and 
conducts relevant empirical tests with 326 micro-data of family farms, aiming to explore the impact of 
automatic seeding and fertilization technology on the cost structure, and thus provide a reasonable 
basis for refined cost management. 
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2. Theoretical Framework and Research Hypotheses 
2.1 Adaptability Analysis of Activity-Based Costing 

Activity-based costing relies on the theoretical framework of "resources, activities, and cost 
objects", breaking through the constraints of the static allocation mode of traditional cost accounting 
of "materials, labor, and expenses", and is particularly suitable for exploring the dynamic changes in 
cost structure caused by technological innovation. In the field of family farms, after the adoption of 
automatic seeding and fertilization technology, the agricultural production mode has gradually 
changed from extensive to intensive, making the cost composition and its driving factors show 
diversified characteristics. The existing accounting system is difficult to accurately reflect the cost 
fluctuations in each operation link [5]. This method subdivides the seeding and fertilization process 
into five interrelated operation units: "soil testing, seed pretreatment, seeding execution, fertilization 
regulation, and quality inspection"[6], so as to systematically identify the cost drivers in each 
operation stage. Labor cost is significantly positively correlated with labor time [4]; seed cost is 
greatly affected by seeding accuracy [7]; fertilizer cost is closely related to nutrient absorption rate [10]; 
and mechanical operation cost is mainly determined by the frequency of equipment use [8]. This 
refined cost accounting system can not only accurately measure the cost-effectiveness of automatic 
seeding and fertilization technology in each operation link, but also provide empirical basis for 
exploring the internal mechanism of cost structure improvement driven by technology, thus 
providing theoretical support and operational guidance for family farms to implement accurate cost 
control strategies. 
 
2.2 Mechanism of the Impact of Technology Application on Cost Structure 
2.2.1 Labor Cost Squeezing Effect 

The automatic seeding and fertilization system significantly reduces labor input through precise 
seeding and fertilization, thereby reducing the proportion of labor cost. The direct effect is that 
intelligent seeding equipment significantly improves operation efficiency. By achieving 
centimeter-level positioning accuracy to replace traditional manual seeding, the operation time per 
mu is shortened from 2.1 hours to 0.3 hours. Based on this calculation, with the average agricultural 
labor cost of 82 yuan/hour in 2023, the unit operation cost is significantly reduced from 172 yuan to 
24.6 yuan, achieving a cost saving of up to 85.7%. This efficiency improvement shows a cumulative 
effect in large-scale agricultural operations. For example, a farm with an area of 300 mu is expected to 
save about 44,000 yuan in quarterly labor costs. The indirect effect is due to the innovation of seeding 
technology. By accurately controlling the seeding spacing error to ≤2cm [9], the error rate is 
significantly reduced by 75% compared with manual operation. This improvement reduces the 
rework rate from 15% in the traditional operation mode [3] to less than 3%, thus reducing the labor 
demand in the quality inspection stage and achieving about 40% labor cost saving. When discussing 
the impact of "quantity" and "quality" dual-dimensional optimization strategies on the labor cost 
structure, compared with the traditional operation mode, after the introduction of technical solutions, 
the proportion of labor cost significantly decreases from 38.7% to 21.3%, which is based on descriptive 
statistical analysis. This result strongly supports Hypothesis H1, that is, there is a positive 
relationship between the improvement of technology penetration rate and the reduction of labor cost. 

 
2.2.2 Mechanical Cost Substitution Effect 

The introduction of automatic seeding and fertilization system, through the fixed cost formed by 
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equipment investment, has a significant substitution effect on the variable cost dependent on labor. 
The specific threshold of this substitution effect, i.e., the critical point, depends on the scale effect of 
agricultural operations.[2] Taking an intelligent seeder with an initial cost of 150,000 yuan as an 
example. If the straight-line depreciation method is adopted, its annual depreciation cost is 28,500 
yuan. Considering the residual value rate of 5%, the unit depreciation cost drops to 95 yuan/mu after 
completing 300 mu of operations, which is lower than the cost of traditional manual operation for the 
first time. The identification of this critical scale confirms Hypothesis H2, that is, when the land area 
exceeds 300 mu, the marginal substitution effect of mechanical cost shows a significant amplification 
trend. Further analysis reveals that when the scale of farmland operations is expanded to 500 mu, the 
unit mechanical operation cost drops to 57 yuan/mu, achieving a significant saving of 66.9% 
compared with labor cost. In the total production cost composition, the proportion of mechanization 
cost also increases from the original 12.4% to 18.6%. This substitution effect shows obvious regional 
differences in terrain characteristics, especially between hilly areas and plain areas. In plain areas, the 
large-scale intensive farming mode significantly improves the use efficiency of agricultural machinery, 
with the equipment utilization rate as high as 85% [8]. In contrast, the scattered land plots in hilly 
areas limit the continuity of agricultural machinery operations, and the unit mechanical cost increases 
by 23%, which further highlights the key role of the principle of economies of scale in promoting the 
substitution effect. 

 
2.2.3 Material Cost Precision Effect 

The automatic seeding and fertilization system effectively reduces material waste through the 
implementation of a two-layer precise control strategy. According to the research of Tran et al. (2024), 
the variable fertilization system can dynamically adjust the fertilization strategy according to the 
real-time detection data of soil nutrients, significantly improving the fertilizer utilization efficiency. 
Compared with the traditional fertilization mode, the fertilizer utilization rate is significantly 
increased from 35% to 58%, achieving a reduction in fertilizer input per unit area, specifically by 
about 23%[10]. Taking corn planting as an example, in the traditional fertilization mode, 40 kg of 
compound fertilizer is needed per mu, corresponding to a cost of 240 yuan. In contrast, after the 
implementation of intelligent fertilization technology, the fertilizer usage per mu is significantly 
reduced to 30.8 kg, and the corresponding cost is reduced to 185 yuan, achieving an economic effect 
of saving 55 yuan per mu. The reduction in seed cost is mainly due to the application of precise 
seeding technology, which realizes precise control of seeding depth and reasonable spacing between 
seeds with the help of a pneumatic seed metering device. This innovative measure significantly 
reduces the seed waste rate from 18% in the traditional manual seeding mode[7] to less than 3%, and 
thus saves about 30 yuan per mu in seed cost. This study reveals that in the cost optimization of cash 
crop planting, especially when the seed cost is high, the implementation of precise seeding 
technology can significantly reduce the seed loss cost, estimated to be about 150 yuan per mu. Due to 
the complexity of the fertilization demand of cash crops, their fertilizer optimization effect is 
relatively limited compared with food crops, with an increase of only about 8 percentage points. This 
finding strongly supports the assertion in Hypothesis H3 that the cost optimization effect of cash 
crops is weaker than that of other crops. 
 
3. Research Design 
3.1 Sample Selection 
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This study implemented a multi-stage stratified random sampling technique to ensure the 
representativeness and comprehensiveness of the sample. In the first stage, according to the 
popularization degree of agricultural mechanization, the country was divided into three levels of 
regions: eastern, central, and western. Then, in each type of region, 4 major agricultural production 
provinces were randomly selected, totaling 12 provinces, including Shandong, Jiangsu, Henan, Hubei, 
Sichuan, and Shaanxi. In the subsequent stage, in each selected province, family farms applying 
automatic seeding and fertilization technology were identified and included as the intervention 
group, while family farms not implementing this technology were selected as the control group. The 
specific conditions for including samples are as follows: the farm must have at least 3 years of 
operation history, the cultivated area is in the range of 20 to 500 mu to reflect the general scale of 
family farms, and the main crops should include food crops such as wheat, corn, and rice, or cash 
crops such as vegetables and fruits. Finally, a total of 326 valid samples were collected and analyzed, 
including 187 in the experimental group and 139 in the control group, and their specific distribution is 
detailed in Table 1. 
 

Table 1: Sample Distribution. 

Region 
Number of 
Provinces 

Treatment Group Control Group Total 

Eastern 4 68 42 110 
Central 4 62 51 113 
Western 4 57 46 103 

Total 12 187 139 326 
 

3.2 Variable Definition 
3.2.1 Explained Variable 

Cost Structure Optimization (CSO): A comprehensive index is constructed using the entropy 
method, including 3 secondary indicators. 

Calculation steps: (1) Standardize the indicators. (2) Calculate the indicator entropy and weight. 
(3) Weighted summation to obtain CSO. 
 
3.2.2 Core Explanatory Variable 

Technology Application Depth (TAD): Calculated by weighting three dimensions: 
Equipment investment intensity (X1) = investment in automatic seeding and fertilization 

equipment / operating area (10,000 yuan/mu), with a weight of 0.4 
Intelligent control level (X2): Assigned according to whether the equipment has GPS navigation 

and variable fertilization functions (0 = none, 1 = partially equipped, 2 = fully equipped), with a 
weight of 0.3 

Operating area coverage rate (𝑦𝑦3) = Technical application area / Total operating area × 100%, with 
a weight of 0.3 

Calculation formula: 𝑇𝑇𝑇𝑇𝑇𝑇 = 0.4 × 𝑋𝑋1 + 0.3 × 𝑋𝑋2 + 0.3 × 𝑋𝑋3 (value range 0-3, the larger the value, 
the deeper the technology application). 
 
3.2.3 Moderating Variables 

Farm scale (S): operating area (mu); to reflect the scale effect, the square term of S (S²) is 
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introduced 
Crop type (CT): dummy variable (1 = food crops, 0 = cash crops) 

 
3.2.4 Control Variables 

Operating years (Age): the number of years the farm has been established 
Soil fertility (Fert): assigned according to the soil test report (1 = low, 2 = medium, 3 = high) 
Household head's education years (Edu): the number of education year’s corresponding to the 

household head's education level (e.g., junior high school = 9 years) 
Regional characteristics (Region): dummy variable (1 = eastern, 2 = central, 3 = western) 
 

3.3 Model Setting 
Benchmark Model: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  𝛼𝛼0 + 𝛼𝛼1𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 + ∑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘𝑘𝑘 + 𝜇𝜇𝑖𝑖 
This study takes 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 as the cost structure optimization level of the i-th family farm as the 

dependent variable, takes TADi as the core independent variable (reflecting the depth of technology 
application), and also adds control variables 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘𝑘𝑘, including operating years (Age), soil fertility 
(Fert), household head's education level (Edu), and regional attributes (Region). Among them, α0 is 
the intercept term, α1 reflects the regression effect of the core independent variable, αk corresponds 
to the parameter estimation value of each control variable, and 𝜇𝜇𝑖𝑖 is the random disturbance term. 
This model aims to explore the actual impact mechanism of technology application depth on cost 
structure optimization. If 𝛼𝛼1 is significantly positive, it can be proved that increasing technology 
investment can significantly promote the effect of cost structure improvement. 

Moderating Effect Model: To explore the moderating role of farm scale and crop type in the 
relationship between technology application and cost structure optimization, interaction terms are 
introduced to construct the model. 

Farm Scale Moderation Model: 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 + 𝛽𝛽2𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 × 𝑆𝑆𝑖𝑖 + 𝛽𝛽3𝑆𝑆𝑖𝑖 + 𝛽𝛽4𝑆𝑆𝑖𝑖2 +
∑𝛽𝛽𝛽𝛽𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘𝑘𝑘 + 𝑉𝑉𝑖𝑖 

𝑆𝑆𝑖𝑖 is the farm scale,  𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 × 𝑆𝑆𝑆𝑆 is the interaction term between technology application depth 
and farm scale, and 𝑆𝑆𝑖𝑖2 is used to capture the non-linear characteristics of the scale effect. If 𝛽𝛽2 is 
significant, it indicates that the farm scale has a moderating effect on the cost optimization effect of 
technology application. A positive coefficient means that the expansion of scale strengthens the 
positive impact of technology, while a negative coefficient means weakening. 

Crop Type Moderation Model: 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 = 𝛾𝛾0 + 𝛾𝛾1𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 + 𝛾𝛾2𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐶𝐶𝐶𝐶𝑖𝑖 + 𝛾𝛾3𝐶𝐶𝐶𝐶𝑖𝑖 + ∑𝛾𝛾𝛾𝛾𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘𝑘𝑘 + 𝜀𝜀𝑖𝑖 
𝐶𝐶𝐶𝐶𝑖𝑖 is a dummy variable for crop type (1 = food crops, 0 = cash crops), and   is the interaction 

term between technology application depth and crop type. If 𝛾𝛾2 is significant, it indicates that there 
are differences in the cost optimization effect of technology application among different crop types. A 
positive coefficient indicates that the optimization effect of technology is stronger in food crops, while 
a negative coefficient indicates that the effect is weaker in cash crops, so as to verify the assertion 
about the difference in crop types in Hypothesis H3. 

To explore the mechanism by which the improvement of operation efficiency caused by 
technology application affects the cost structure, this study selects the proportion of labor cost, 
mechanical cost, and material cost as mediating variables (M) to establish a mediating effect analysis 
model for the study. 

Step 1: 𝑀𝑀𝑖𝑖 = 𝛿𝛿0 + 𝛿𝛿1𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 + ∑𝛿𝛿𝑘𝑘𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘𝑘𝑘 + 𝜁𝜁𝑖𝑖  
Step 2: 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 = 𝜃𝜃0 + 𝜃𝜃1𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 + 𝜃𝜃2𝑀𝑀𝑖𝑖 + ∑𝜃𝜃𝑘𝑘𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘𝑘𝑘 + 𝜂𝜂𝑖𝑖 
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If the first-stage regression analysis is significant and the second-stage regression analysis is 
significant, and the absolute value of 𝜃𝜃1 is less than that in the benchmark model, it is considered 
that there is a partial mediating effect. This indicates that technology application indirectly affects cost 
structure optimization by adjusting operation efficiency (such as the proportion of labor, mechanical, 
and material costs), verifying the transmission path of "technology application →  operation 
efficiency →  cost driver". All established models have passed the heteroscedasticity test and 
multicollinearity test, ensuring the robustness of the estimation results. To address the issue of 
regional clustering in panel data, this paper uses cluster-robust standard errors for correction. 
 
4. Results and Analysis 
4.1 Descriptive Statistics 

In the case of selecting 326 family farms for empirical analysis: the mean value of the cost 
structure optimization index is 0.42, with a standard deviation of 0.18, showing obvious heterogeneity 
and a medium to high level. The mean value of technology application degree is 1.25, indicating that 
there is still much room for improvement in the current automatic seeding and fertilization 
technology. The mean value of equipment investment intensity is 0.08 million yuan/mu, and the 
mean value of intelligent control system is 1.12. Although some intelligent functions are available, the 
proportion of high-end agricultural machinery is low. The average operating scale of the sample 
farms reaches 156.8 mu, including various scales, and about 23% of the farms have an area larger than 
300 mu, showing a trend of scale expansion. Food crops account for 67% and cash crops account for 
33%, which basically conforms to the characteristics of China's agricultural industrial structure. The 
average operating years are 8.2. The data sample of this study is the 2021 data sample, including 258 
observation points. The average fertility is 2.1, which is "medium". The average education years of the 
household head is 9.6 years. The proportion of the eastern region is 33.7%, the central region is 34.7%, 
and the western region is 31.6%. The overall sample has high representativeness and reasonable 
uniformity, which can be a reliable basis for further research. 
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Table 2: Descriptive Statistics of Main Variables. 

Variable 
Category 

Variable 
Name 

Mean 
Standard 
Deviation 

Minimum Maximum 

Explained 
Variable 

Cost Structure 
Optimization 

Degree 
0.42 0.18 0.05 0.89 

Core 
Explanatory 

Variable 

Technology 
Application 

Depth 
1.25 0.76 0 3 

 
Equipment 
Investment 

Intensity 
0.08 0.05 0 0.32 

 
Intelligent 

Control Level 
1.12 0.68 0 2 

Moderating 
Variable 

Farm Scale 156.8 102.3 20 500 

 Crop Type 0.67 0.47 0 1 
Control 
Variable 

Operating 
Years 

8.2 4.5 3 25 

 Soil Fertility 2.1 0.7 1 3 

 

Household 
Head's 

Education 
Years 

9.6 2.3 6 16 

 
Regional 

Characteristics 
2.03 0.82 1 3 

 
4.2 Regression Result Analysis 

There is a significant positive correlation between technology application depth and cost 
structure optimization degree, with a regression coefficient of 0.152, that is, for each increase of 1 unit 
in technology application depth, the average cost structure optimization degree will increase by about 
0.152. It can be seen from the above analysis that operating years, soil fertility, and farmers' education 
level all have a significant impact on cost management efficiency and technology implementation 
effect. The regression coefficient of operating years is 0.012; the regression coefficient of soil fertility is 
0.087; and the regression coefficient of farmers' education years is 0.023. The regression coefficient of 
TAD × S is 0.001, and the coefficient value of S² is -0.00002. It can be concluded that the scale effect has 
the characteristic of marginal increase, that is, as the scale expands, the cost-saving effect brought by 
technology investment gradually strengthens. When the scale is close to 375 mu, the marginal benefit 
brought by scale expansion shows a decreasing trend. This is consistent with the theoretical 
expectation. In plain areas with a high level of mechanization, when the area exceeds 300 mu, 
mechanization replacing labor has more advantages than labor replacing labor. The interaction effect 
between the depth of technology application and crop type is strong, with a coefficient of 0.092 and a 
p-value less than 0.01, indicating that food crops have greater potential in reducing costs. The 
fertilizer use efficiency of food crops has increased by 23%, while that of cash crops has only 
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increased by 8%. The fertilization operation of cash crops is complex, so the application scope of 
related technologies is small. This conclusion confirms the rationality of Hypothesis H3 that there is 
little room for cost improvement of cash crops. 
 
4.3 Robustness Test 

The cost-profit rate is used as a substitute indicator to evaluate the degree of cost structure 
optimization. Empirical analysis shows that the coefficient of technology application depth is 0.123, 
which is consistent with the benchmark model, and also proves that technology investment has a 
significant positive promoting effect on improving cost-effectiveness. To enhance the credibility of 
statistical conclusions, the core variables are subjected to 1% level winsorization to eliminate possible 
interference from outliers. After correction, the coefficient of technology application depth becomes 
0.148, but the main conclusions of the moderating effect and mechanism test remain unchanged. This 
study uses "the popularity of automatic seeding and fertilization technology in the county" as an 
instrumental variable and conducts empirical analysis with a two-stage least squares model to solve 
potential endogeneity problems. The results show that the regression coefficient of technology 
application depth is 0.167, which well demonstrates that there is a significant causal relationship 
between agricultural technological innovation and the improvement of production factor costs. 
 
5. Conclusion 

After the promotion of automatic seeding and fertilization technology, the cost structure of 
family farms will be significantly improved. With the improvement of operation efficiency, the cost 
factors are redistributed. According to the research, for each increase in technology investment, the 
total cost decreases by an average of about 0.152 units, among which labor cost decreases by 8.7%, 
mechanical cost increases by 5.3%, and material cost decreases by 4.2%, accounting for 74.4% in total. 
The performance of this technology varies among different scales and crop types. When the farm area 
is larger than 300 mu, the optimization effect shows an increasing trend. In plain areas with a high 
level of mechanization, food crops are more economical than cash crops. The fertilizer uses efficiency 
of the former increases by 23%, while that of the latter only increases by 8%. The fertilization 
operation of cash crops is complex, so the application scope of related technologies is small. The 
supporting conditions for technology application have a significant impact on the cost optimization 
effect. The research shows that family farms with long operating years, high soil fertility, and high 
education levels have better cost control in technology application, which also indicates the 
importance of the synergistic effect of technology, management, and resources in improving 
economic benefits. Automatic seeding and fertilization technology provides a feasible way for family 
farms to implement refined cost management. In the future, it is necessary to formulate differentiated 
technology promotion plans according to the different scale characteristics of family farms, and 
strengthen the integration of technological innovation and operation management, so as to maximize 
the economic value of agricultural technology. 
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