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Abstract: In recent years, with the complexity of Marine traffic and the popularization of 
asynchronous sensor acquisition, the prerequisite of traditional uniform sampling is broken, and 
the data time series presents the non-uniform characteristics of "disordered time interval and 
dense mutation features", which makes the Marine moving target calculation face more and more 
challenges of non-uniform sampling data. In order to cope with the shortcomings of traditional 
methods in abrupt change modeling and time structure adaptability, this paper systematically 
analyzes the key influencing factors based on a large number of simulation data, and designs a 
hybrid model architecture with the ability of short-term abrupt change response and long-term 
dependence modeling. In this paper, we propose a hybrid deep regression model 
(STC-BiLSTM-Attention) that integrates spatio-temporal convolution, bidirectional LSTM and 
attention mechanism, which can realize high-precision adaptive calculation method 
optimization. The model uses SCT module to extract local spatio-temporal features, BiLSTM to 
model long-range dependence, and self-attention mechanism to focus on key time points, so as to 
enhance the modeling ability of nonuniform sequence. The experimental results demonstrate that 
the proposed method achieves an average prediction accuracy of 89.75% across five independent 
datasets. In scenarios characterized by non-uniform sampling and high dynamic 
maneuverability, the position calculation error rate is reduced to 8.52%, which is substantially 
lower than that of the Kalman filter (21.36%) and the manual calculation approach (27.84%). 
Ablation studies further validate that the synergistic interaction between the STC module and the 
attention mechanism significantly enhances model accuracy. This highlights the method's 
superior capability in addressing tasks involving both short-term abrupt changes and long-term 
dependencies, thereby offering robust technical support for auxiliary decision-making under 
complex maritime conditions. 
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1. Introduction 

With growing global marine activities, accurate calculation of marine moving targets is vital for 
marine security, resource development, and environmental monitoring. However, constrained by 
observation equipment, environmental factors, and unstable data transmission, actual marine target 
time-series data often has issues like non-uniform sampling [1], data loss [2], and noise [3], posing 
significant challenges to traditional methods. 

https://www.innoseries.com/


Innovation Series: Advanced Science Vol. 2 • Issue 3 
 

140 
 

Traditional maritime target solvers largely depend on manual plotting [4], working effectively 
under complete, uniformly sampled sequential data. However, during missing calculation elements 
or target maneuvers, errors often become excessive, requiring manual re-selection of schemes. Yet 
manual experience struggles to fully anticipate algorithm-specific errors under unique conditions, 
limiting tracking accuracy and system response speed. 

Researchers thus propose statistical models like Kalman filter [5] and particle filter [6], which 
excel in handling uniformly sampled data to minimize manual intervention in maritime target 
solving. However, their performance degrades significantly under non-uniform sampling and 
complex maneuvers. Recent deep learning advancements offer new perspectives for time-series 
modeling: CNN and LSTM excel in extracting spatial-temporal features, with 
ConvLSTM—integrating convolutions into LSTM—widely applied in weather [7] and traffic flow 
prediction [8] to achieve notable results. 

In marine target detection, researchers explore deep learning applications. Wang et al [9] 
developed SALA-LSTM, a deep learning-based marine radar detection method, enhancing local 
feature perception via adaptive convolutions to boost accuracy in complex seas. Yang et al [10] 
integrated attention with ConvLSTM for coastal water level prediction, improving accuracy and 
real-time performance significantly. Sani et al [11] merged radar, AIS, and optical data via GCN to 
model ship interactions for multi-target trajectory prediction. Existing methods often rely on 
interpolation/resampling for non-uniform data, risking information loss or higher complexity; 
adaptive sampling strategies optimize data collection but don't solve non-uniform calculation directly. 
Chen et al [12] proposed FRA-LSTM, fusing forward/reverse subnetworks and attention to capture 
trajectory timing features for better prediction. Zhou et al [13] designed an LSTM model with 
trajectory correlation and temporal attention, filtering redundancies via attention to enhance key 
feature capture and prediction performance. Li et al [14] improved YOLOv7-Tiny with RepVGG and 
feature fusion for better small-target radar detection, though it lacks adaptability to non-uniform 
sampling. 

In non-uniform time-series processing, deep learning has seen breakthroughs. For medical data, 
Wang et al [15] proposed two approaches: missing data imputation (e.g., multiple imputation) and 
direct modeling (e.g., TCN). TCN uses dilated convolutions to capture long-term dependencies but 
lacks spatial feature fusion. In marine applications, Zhang et al [16] applied RC-LSTM for China's 
offshore SST spatio-temporal prediction, using convolutions for spatial features and LSTM for 
time-series, though non-uniform sampling robustness needs improvement. Attention-enhanced 
models like Bommidi et al [17]’s TCN-BiLSTM boost wind speed interval prediction accuracy via 
dynamic time-step weighting, yet adaptive capacity in dynamic environments remains limited. 

Despite advancements in respective fields, limitations remain in handling non-uniform marine 
target time-series data. Non-uniform sampling introduces temporal discontinuities, challenging direct 
application of traditional models. Meanwhile, highly nonlinear and uncertain maritime target 
motions make it difficult for single models to fully capture dynamic characteristics. 

To address these challenges, this study proposes STC-BiLSTM-Attention, a hybrid deep 
regression model integrating Spatio-temporal Convolution (STC), Bidirectional LSTM (BiLSTM), and 
attention mechanisms for precise estimation error prediction. 2D convolutions first extract local 
spatio-temporal dependencies to enhance short-term dynamic perception. Stacked BiLSTM then 
models long-range dependencies, paired with self-attention to highlight critical time steps and 
improve responsiveness to key moments. Finally, LSTM compresses sequences, with fully connected 
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layers outputting error predictions. This architecture balances local detail extraction and global 
dynamic modeling, suitable for ship prediction error modeling in complex environments. 

This method integrates spatio-temporal convolution's spatial feature extraction, BiLSTM's 
time-series modeling strengths, and attention mechanisms' key feature focusing to effectively handle 
non-uniform time-series data, enhancing maritime target solving accuracy and robustness. 
Experiments on simulated/real datasets demonstrate its superior performance in processing 
non-uniform data and capturing complex target motions, offering a novel solution for maritime target 
solving. 
 
2. Spatio-temporal Convolutional Bidirectional LSTM Attention Network 
2.1 Bi-LSTM Model 

Bi-directional Long Short-Term Memory network (Bi-LSTM) uses the parallel architecture of 
forward LSTM (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�����������⃗ ) and backward LSTM (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�⃖����������) to construct a bidirectional temporal dependence 
modeling system. Among them, the forward LSTM transmits information forward along the sequence 
to extract the feature dependencies of historical moments. The backward LSTM backtracks along the 
sequence to mine the influence of future moments on the current state. This bidirectional information 
interaction mechanism enables the model to fully integrate contextual semantic information and 
significantly improve the feature expression ability of sequence data. 

The core gating mechanism of Bi-LSTM consists of a forgetting gate, an input gate and an output 
gate. Each gating unit outputs the value of the interval [0,1]  through the 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  activation 
function to realize the dynamic regulation of the information flow. 

The synergistic effect of the gating mechanisms effectively overcomes the problems of gradient 
disappearance and gradient explosion in traditional recurrent neural networks, so that it shows 
excellent performance in long sequence data processing and can accurately capture complex time 
series dependencies. 

Compared with one-way LSTM, the hidden state ℎ𝑡𝑡 = �ℎ𝑡𝑡���⃗ ;ℎ𝑡𝑡�⃖��� of Bi-LSTM realizes the deep 
fusion of historical and future bidirectional information. In the dynamic modeling of ship 
maneuvering process, the proposed architecture can simultaneously capture the route planning 
information before turning operation (future dependence) and the state evolution characteristics after 
operation (historical dependence). 

 
2.2 Self-attention Mechanism 

As a key deep learning technology, the self-attention mechanism leverages the Query-Key-Value 
(QKV) architecture to model temporal correlations in sequences, inspired by human cognitive 
selective attention for dynamic key information capture in massive data. It first maps input sequences 
into three vector spaces: Query initiates retrieval via targeted queries, Key serves as an information 
index for unique identification and efficient lookup, and Value contains the actual features to be 
aggregated. 

For similarity calculation, dot product or cosine similarity measures Query-Key associations. To 
address gradient vanishing from high dimensions, Scaled Dot-Product Attention normalizes dot 
products by √D (vector dimension) via Softmax, generating attention weights that reflect timestep 
importance in the task—higher weights indicate greater contribution. Finally, weighted summation of 
Values adaptively aggregates sequence information, capturing long-range dependencies and 
dynamically focusing on critical timesteps to enhance complex sequence processing. 
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2.3 Spatio-Temporal Convolutional Layer (SCT) 
The spatio-temporal convolutional layer (SCT) serves as the model's core for handling 

multi-dimensional time-series data. Via temporal local feature extraction and spatial cross-feature 
correlation modeling, it enables multi-scale analysis of maritime target motion states. Designed to 
align with the spatio-temporal coupling nature of ship motion—e.g., course-change/position-offset 
dynamics, speed-adjustment/time-interval correlations—it feeds high-quality inputs with local details 
and cross-feature dependencies into subsequent BiLSTM layers for long-range dependency modeling. 

SCT's core advantage lies in deep spatio-temporal feature coupling. Temporally, 5- and 3-step 
convolution kernels adapt to varying ship maneuver durations. Spatially, kernels process 
multi-dimensional sensor data to model geometric relationships between position offset, speed, 
heading, and time intervals (e.g., heading's impact on position offset at constant speed). The final 
T/2×192 feature map—concatenating 64+128 channels from two convolutional layers—transforms 
non-uniform data into hierarchical spatio-temporal semantic representations. 

Unlike traditional TCN focusing on long-term time-series dependencies, SCT prioritizes local 
mutation analysis of multi-feature time-series data. Its 1D convolutions eschew causal 
constraints/dilation, instead adapting to non-uniform time intervals and sensor feature spatial 
correlations via multi-scale kernel groups and pooling. This design enables SCT to better capture 
instantaneous cross-feature correlations (e.g., heading shifts with position jumps during sharp turns) 
in short-term abrupt change scenarios like ship maneuvers—scenes where TCN's strength in uniform 
long-series trend prediction is less applicable. 

As the first stage in the model's three-level processing pipeline, SCT is critical for feature 
preprocessing, scale adaptation, and pattern separation. It first converts 12D raw data into 
spatio-temporal semantic feature maps, filtering noise and enhancing key motion features. Second, 
pooling downsamples time steps from 20 to 10 to meet Bi-LSTM computational efficiency needs. 
Finally, it distinguishes constant velocity (low activation) and maneuvering (high activation) 
segments via feature response intensity, providing key timestep cues for the self-attention layer. This 
design enables SCT to form an efficient collaborative chain with Bi-LSTM and self-attention—from 
local spatio-temporal feature extraction to long-range dependency modeling and dynamic key 
information focusing—to jointly address complex maritime motion solving challenges. 
 
2.4 Spatio-Temporal Convolutional Bidirectional LSTM Attention Network 
(STC-BiLSTM-Attention) 

However, Bi-LSTM, self-attention mechanism and TCN still have limitations when applied 
separately. The organic integration of the three can give full play to their respective advantages and 
effectively solve the problem of solving moving targets at sea under non-uniformly sampled time 
series data. 

Building on this, we construct the STC-BiLSTM-Attention network to achieve more accurate 
target solutions. While Bi-LSTM, self-attention, and TCN excel in their domains, single models face 
limitations with non-uniform marine target data: Bi-LSTM lacks explicit time interval modeling, 
self-attention may overlook long-interval key info, and TCN struggles with irregular time interval 
changes. By organically integrating their strengths, the proposed STC-BiLSTM-Attention network 
effectively addresses non-uniform sampling challenges, enhancing solving accuracy and robustness 
for maritime motion targets. 

Aiming at ship behavior in multivariable dynamic sequence of complex evolution process and 
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calculates the error prediction of nonlinear characteristic, this paper proposes a Spatio-Temporal 
Convolution (STC) network combined with Bidirectional Long Short-Term Memory (BSTM) network. 
BiLSTM) mixed with Attention mechanism (Attention) of neural network structure, referred to as on 
STC - BiLSTM - Attention. This structure can simultaneously model global change pattern and local 
temporal dependence, and automatic focusing on the key segments of time, so as to improve 
prediction accuracy and generalization ability model. 

This model consists of the following five main modules: 
(1) Input layer and data preprocessing 
The input is a multi-dimensional feature sequence in a time window with the shape (T,F), where 

T is the time step (e.g., 20) and F is the number of key variables after feature selection (e.g., 10). All 
feature values are normalized by MinMaxScaler, and the target variable (estimation error) is also 
standardized to facilitate the stable training of the model. 

(2) Spatio-Temporal Convolutional Module (STC) 
For mining the short-term time change and characteristics between local coupling mode, first 

will reshape the input sequence for the three-dimensional tensor, then USES the two-dimensional 
convolution (Conv2D) slide for joint operations. (T,F,1) This convolutional layer can be regarded as a 
filter acting on both time and variable dimensions to identify "behavior patterns" in local feature 
segments. Through MaxPooling2D down sampling, compression time step of information 
redundancy and denseness of enhanced features expression. 

(3) Bidirectional LSTM module (BiLSTM) 
To capture ships path dependency information for a long time, the evolution of network design 

for two layer stacked two-way LSTM, node contains 128 and 64 units, respectively. The structure on 
the direction of forward and reverse two times of coding sequence information, effectively ease the 
one-way LSTM information loss problem. Each layer after joining Dropout layer (discard rate 0.4), in 
order to enhance robustness of the model and prevent the fitting. 

(4) Self-Attention 
Due to the different time points in the time series is finally forecast the influence degree of the 

inconsistent, model introduced from attention mechanism, the output power of the LSTM layer with 
distribution, which focused on the key dynamic characteristics of the time period. Attention results 
with original LSTM output for Mosaic (Concatenate), in the ability of said while maintaining the 
original time structure information. 

(5) The Output Layer 
After joining together, the time sequence of said further through a layer of LSTM unit (32) is 

compressed, then output by the Dense layer as a continuous value target variable (that is, the 
calculation error) prediction results. Model USES the mean square error (MSE) as a loss function 
training, the optimizer for adaptive vector of Adam. 

On average, on STC - BiLSTM - Attention model both said ability strong, full time structure 
modeling, feature advantages of self-focusing, suitable for deployment in intelligent aided 
decision-making system, maritime simulation platform and anomaly detection, etc. The actual 
application scenario. Its specific structure as shown in Figure 1. 
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Figure 1: Method Flow of The Model Constructed in This Paper. 

 
3. Simulation Data Generation Model 
3.1 Overview of Model Setup 

Data generation module is designed to simulate non-uniform sampling trajectory of the sea ship, 
generates true state (position, speed, heading), mobile label direct flights (constant speed, steering, 
deceleration) and observation error (distance, direction, azimuth) of multidimensional data set. 
Module through parametric configuration, random event injection, dynamic error modeling methods, 
such as repetition of the complexity of the real-ship motion in the scene with non-uniform sampling 
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feature, for subsequent target training and validation of the calculating model provides high quality 
data to support. 

 
3.1.1 Overall Process Structure 

The whole data generation process revolves around the generation of ship track. Each round of 
simulation generates a pair of ship trajectories, calculates the relative relationship in space and time, 
labels the segment information, and injects the observation error related to the target distance. In the 
end, after the amount of data required, system incorporating simulation results for structured data 
table, so that subsequent calls and algorithm evaluation model using. The key components of the 
process include trajectory generation, behavior injection, temporal sampling, location calculation, 
state alignment, label generation, and observation error modeling, as detailed in Figure 2. 

 

 
Figure 2: Data Generation Module Architecture Diagram. 

 
 

3.1.2 Flight Path Simulation 
The trajectory of each vessel is by default composed of 𝑁𝑁 ≤ 1200 discrete time steps, sailing for 

approximately 20 minutes. The initial heading Angle 𝜃𝜃0 is uniformly sampled from the interval 
[0,2𝜋𝜋), and the initial speed 𝑣𝑣0 is randomly selected from the set range [𝑣𝑣min , 𝑣𝑣max]. These parameters 
determine the initial direction of motion and propulsion speed of the ship, ensuring that each 
simulation is different from the other. 

The course angle and speed of the ship can be dynamically adjusted in the flight, formation has 
the characteristics of trajectory. All state variables (position, speed, heading, mobile) are updated in 
each time step, and ultimately the organization is structured sequence data. 

 
3.1.3 Modeling Maneuvering Behavior 

In order to simulate the motion diversity of the actual ship, the system randomly injected 
steering or acceleration and deceleration events during the trajectory generation. The steering 
behavior is realized by adjusting the heading Angle within a certain time window, and the Angle 
variation range is set to [15°, 45°] ,and the number of continuous steps is set to 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 100 ± 20. 



Innovation Series: Advanced Science Vol. 2 • Issue 3 
 

146 
 

Heading angle of the angle of the increment/decrement for each step: 
In trajectory stochastic trajectory diversity, to enhance system into a turn or deceleration 

behavior. Among them: 
The Angle change of the steering behavior is: 

𝛥𝛥𝛥𝛥 =
𝛩𝛩total

𝑇𝑇turn
 

The speed increment of the acceleration and deceleration behavior is: 
𝛥𝛥𝛥𝛥 = ±𝛼𝛼 ⋅ 𝑣𝑣0 (𝛼𝛼 = 0.2) 

The duration of both types of behaviors was 𝑇𝑇 = 100 ± 20 steps, and the interval between 
behaviors was maintained at least 100 steps. 

 
3.1.4 Spatial Advance and Position Calculation 

Position update based on the current course Angle and speed, track is advancing through the 
current course Angle and speed calculating two-dimensional position change, perspective 
transformation is as follows: 

𝜙𝜙𝑡𝑡 = 90∘ − 𝜃𝜃𝑡𝑡 
Displacement updating formula is: 

𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑡𝑡 + clip(𝑣𝑣𝑡𝑡 ⋅ cos𝜙𝜙𝑡𝑡) 
𝑦𝑦𝑡𝑡+1 = 𝑦𝑦𝑡𝑡 + clip(𝑣𝑣𝑡𝑡 ⋅ sin𝜙𝜙𝑡𝑡) 

Where 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐() represents the limit on the maximum moving distance in a single step, which is 
used to limit the maximum moving distance in a single step to not exceed the set value (such as 2.0 
meters) to avoid the jump change in the simulation results. 

 
3.1.5 Relative State Calculation 

For each time sampling point, the system calculates the spatial relationship between ship 1 and 
ship 2, which includes two key variables: 

Relative distance: 𝒅𝒅𝒕𝒕 

𝑑𝑑𝑡𝑡 = �(𝑥𝑥1𝑡𝑡 − 𝑥𝑥2𝑡𝑡)2 + (𝑦𝑦1𝑡𝑡 − 𝑦𝑦2𝑡𝑡)2 

Relative azimuth: 𝜷𝜷𝒕𝒕 
𝛽𝛽𝑡𝑡 = [𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2(𝑥𝑥1𝑡𝑡 − 𝑥𝑥2𝑡𝑡 ,𝑦𝑦1𝑡𝑡 − 𝑦𝑦2𝑡𝑡)]     𝑚𝑚𝑚𝑚𝑚𝑚 360∘ 

These two pieces of information constitute the core observations that can be obtained by the 
analog perception system, and are widely used in target localization and collision avoidance strategy 
modeling. 

 
3.1.6 Dynamic Error Modeling and Observation Construction 

To simulate the real sensor observation uncertainty, existing in the system design a set of 
dynamic error injection mechanism related to the distance. The error acts on the following variables: 

The relative distance 𝑑𝑑𝑡𝑡 error follows a normal distribution: 
𝜀𝜀𝑑𝑑 ∼ 𝒩𝒩(0,0.1) 

The heading angle and azimuth angle errors vary according to the target distance, and the error 
range is as follows: 

𝜀𝜀𝜃𝜃(𝑑𝑑𝑡𝑡) = �
[−0.5∘, 0.5∘],𝑑𝑑𝑡𝑡 ≤ 100

[−𝑟𝑟(𝑑𝑑𝑡𝑡), 𝑟𝑟(𝑑𝑑𝑡𝑡)], 100 < 𝑑𝑑𝑡𝑡 < 1500
[−2.0∘, 2.0∘],𝑑𝑑𝑡𝑡 ≥ 1500
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Where the error growth function is: 

𝑟𝑟(𝑑𝑑𝑡𝑡) = 0.5 + �
𝑑𝑑𝑡𝑡 − 100

1400
� ⋅ 1.5 

The ship speed error is: 
𝜀𝜀𝑣𝑣 ∼ 𝒰𝒰(−0.5,0.5) 

The above-mentioned errors respectively act on the fields such as "Observation Distance", " 
Observing ship 1 Heading ", " Observe boat 1 speed ", " Observe the relative azimuth ", etc., to form 
the simulated output of the perception system. 

 
3.1.7 Time Interval Division and State Sampling 

The total duration of the trajectory is set to 1200 seconds. Time sampling by generating more 
time period (interval), unless otherwise stipulated in the track events, the length of each time period 
in the [60,180] seconds between random sampling. If any motor behavior, keep its continuous period 
of time, the rest of the non-motor vehicle period were randomly divided, form the final time sampling 
point. The end of each time period is used as the state observation point to form the time series 
feature. 
3.1.8 Segmentation Tags Generated 

To achieve multi-stage prediction and combination strategy testing, each trajectory is randomly 
divided into 1 to n segments, and a unique "segment label" is assigned to each segment. The 
segmentation function executes multiple rounds of random trials under the constraint of a minimum 
segment length (e.g., 4 minutes, corresponding to 240 steps), and returns the optimal segmentation 
scheme that meets the conditions. The label ends up as an integer (1,2,... , n) tags are attached to each 
sample. 

 
3.2 Model parameters 

The parameter system recorded by the simulation program comprehensively covers the 
multi-dimensional characteristics of ship motion. Through meticulous parameter design, it achieves 
high-fidelity simulation of real sea conditions, as detailed in Table 1: 
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Table 1: Model Parameters Generated by The Simulation Program. 

Parameter categories Parameter names Type Description 
Basic metadata Run ID True value A number that uniquely identifies each 

simulation run 
Base metadata Time True value Timestamp of the trajectory point (in minutes) 
Ship 1 (target) Ship 1_X True value X-axis coordinates of boat 1 (true position)  

Boat 1_Y True value Y-axis coordinates of boat 1 (true position)  
Boat 1 heading True value True heading Angle of boat 1 (degrees, 0-360°)  
Boat 1 speed True value True speed of Boat 1 (in knots or meters per 

second)  
Boat 1 maneuver Real value Boat 1's maneuver type label 

Boat 2 (reference 
boat) 

Boat 2_X True value X-axis coordinates of Boat 2 (true position) 

 
Boat 2_Y True value Y-axis coordinates of Boat 2 (true position)  
Boat 2 heading True value True heading Angle of Boat 2 (degrees, 0-360°)  
Boat 2 speed True value True speed of Boat 2 (same units as above)  
Boat 2 Maneuver Real value Boat 2's Maneuver type label 

Relative motion 
parameter 

Actual distance True value The true straight-line distance between the two 
ships (in meters or nautical miles)  

Relative azimuth True value Boat 2's azimuth relative to Boat 1 (degrees, 
0-360°) 

Observations (with 
error) 

Observation 
distance 

Observations The observed distance after injecting the 
distance error  

Observing ship 1 
Heading 

Observations Ship after injecting heading error 1 Observe 
heading  

Observe boat 1 
speed 

Observations Ship 1 observed velocity after injection of 
velocity errors  

Observe Boat 2 
heading 

Observations Ship after injecting heading error 2 Observe 
heading  

Observe the relative 
azimuth 

Observations Observed relative azimuth Angle after injecting 
azimuth error 

Segmentation and 
error parameters 

Segment labels Segment 
information 

Track segment number (to distinguish between 
different voyage phases)  

Heading error 
(implied) 

Error 
parameters 

Deviation of course observations from true 
values (boat 1/ boat 2)  

Azimuth error 
(implied) 

Error 
parameters 

Deviation of the relative azimuth observation 
from the true value 

 
3.2.1 Engineering Significance of Parameter Configuration 

1) Multi-dimensional coupling modeling 
Through the dynamic association of "course-speed-position" (for example, steering is 

accompanied by speed adjustment and position offset), it ensures that the generated data conforms to 
the kinematics of the ship, and avoids the physical irrationality of synthetic data. 
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2) Non-uniform sampling simulation 
The different setting of the time interval in the maneuvering and non-maneuvering segments 

(see Section 3.1.7) directly corresponds to the high-frequency sampling strategy of the sensor when 
the target state changes dramatically, which enhances the fit between the data and the actual scene. 

3) The authenticity of error mechanism 
The range-dependent error model refers to the real sensor characteristics (e.g., radar ranging 

accuracy decreases with distance), which makes the simulation data more generalized and ensures 
the reliability of the model in real sea conditions. 
 
3.2.2 Data Scale and Distribution 

Sample size: A total of 5000 independent samples were generated, and each group contained 2 
ships and trajectory data within 1200 seconds, with a total data volume of about 600 000 records. 

Scenario coverage: It included steering maneuver, acceleration and deceleration maneuver, and 
pure direct flight scenarios. The error level was divided into short range (<500 meters), medium range 
(500-1500 meters), and long range (>1500 meters) according to the distance to ensure the diversity and 
balance of the training data. 

Through the above parameter design, the simulation model realizes the multi-physics coupling 
modeling of the maritime target motion, provides training and testing data close to the real scene for 
the STC-BiLSTM-Attention model, and supports the verification of its adaptive solving ability in the 
non-uniform sampling environment. 

 
4. Experimental data processing and analysis 

Hold to verify the proposed STC BiLSTM - Attention model under non-uniform sampling data of 
sea targets forecast the effectiveness and superiority of calculating error, this paper designed a series 
of experiments, simulation data to construct, contrast scheme evaluation and module performance 
analysis, and many other aspects. The experiments are carried out from both qualitative and 
quantitative perspectives, and the performance of the model is comprehensively evaluated by 
combining visualization and numerical analysis. 
 
4.1 Preprocessing of Simulation Data 

In order to ensure the accuracy of the algorithm evaluation and the consistency of the 
experimental process, this paper conducts systematic data preprocessing on the original trajectory 
data, which mainly includes data reading, cycle and segment division, algorithm combination 
generation, input construction and other steps.  

Firstly, multiple simulated or real ship trajectory data are read from the generated simulation 
data. The data format contains fields such as "run ID" and "segment label" to identify the period to 
which each record belongs and its position in the period. After reading, the data is sorted according to 
the run ID and the time field, and the index is reconstructed to ensure the consistency of the time 
series. 

Then, the system partitions each run period (i.e., each complete navigation trajectory) according 
to its "segment label" field. Each cycle is further subdivided into several segments, each 
corresponding to a continuous navigation segment or maneuver behavior. On this basis, the 
preprocessing module constructs all possible combinations of algorithms. Given that the current cycle 
contains n segments and the number of trajectory estimation algorithms available to the system is m, 
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the total number of combinations is. mnIn  this study, six different traditional single plotting 
algorithms have been incorporated into the model, so the number of combinations can reach 
hundreds. 

In the data preparation stage, each trajectory needs to construct its input data. For the first 
segment in each combination, the system selects the first four data from the beginning of the segment 
as the initial input. For the non-first segment, according to the requirements of the selected algorithm, 
the latest 1 or 2 observations are extracted from the end of the previous segment and concatenated to 
the previous segment to ensure the continuity of the algorithm state. Especially, if some algorithms 
have strong inertia dependence (e.g., algorithms using sliding Windows or filters), the system will 
automatically provide them with longer historical context. 

After completing the input construction, the system executes the specified algorithm function of 
each segment in turn for each combination, and records the meta-information such as running time, 
segment length, and the number of the algorithm used. Combinations that fail to run will be 
automatically skipped and the exception type will be recorded to ensure the robustness of the 
processing flow. The running results of all combinations are summarized and saved, including the 
complete trajectory estimation output file (which can be saved in batches) and the summary statistics 
file for each combination, which is convenient for subsequent algorithm comparison and performance 
analysis. 

The design of the preprocessing flow ensures the consistency of algorithm evaluation and the 
scalability of high-throughput experiments, which is the core support module of the experimental 
system in this paper. 

 
4.2 Model Validation 

Two kinds of data sources are used to verify the model: one is the large-scale simulation data 
generated by parameter control and noise modeling, and the other is the measured ship sailing data. 
The simulation data are generated by the model in Section 3. Each round of simulation contains the 
trajectories of two ships within 1200 seconds, covering typical behaviors such as constant speed 
straight sailing, acceleration and deceleration, and left-right turning, and adding dynamic errors 
related to the target distance. A total of 5000 sets of samples were generated to ensure the diversity of 
different environments and behavior distributions. 

In order to comprehensively evaluate the prediction performance of the fused STC-BiLSTM 
model under different calculation combination strategies, in this study, we designed an accuracy test 
mechanism based on the average ranking of the real value and the predicted value. Specific approach 
is to first data extracted from multiple simulation results, and for each operation within the ID label 
each combination of the real value and predictive value are calculated respectively the average. On 
this basis, all the combinations in each sailing cycle are sorted according to the average value of the 
real value and the average value of the predicted value. We will forecast the combination of the 
average ranked first as the operation model of optimization results, and further determine whether 
the combination is an average sort of real value first, if it is, argues that the predicted results are 
accurate. The overall prediction accuracy was calculated by counting the ratio of the number of 
accurate predictions to the total number of runs. This method can not only quantitative prediction 
effect under the different combination strategies, also have a certain robustness, suitable for 
complicated sea conditions and inhomogeneous observation model under the condition of optimizing 
analysis. 



Innovation Series: Advanced Science Vol. 2 • Issue 3 
 

151 
 

The same training-testing partition (80% training, 20% testing) was used for all models, and the 
input length and feature consistency were maintained. In the validation group, five sets of data were 
used for experimental average to avoid the contingency caused by initialization. 

 
4.2.1 Model Comparison 

In order to systematically evaluate the performance of STC-BiLSTM-Attention model under 
different architectures, this paper compares it with traditional and mainstream neural network 
models, including: Bidirectional Recurrent neural Network (BRNN), Convolutional Neural Network 
(CNN), Gated Recurrent Unit (GRU), Bidirectional GRU (Bi-GRU), and basic LSTM model. All 
models used the same training set, feature input, hyperparameters and evaluation metrics. The 
experiment was repeated on five independent datasets, and the average accuracy was calculated. 

The comparison results are shown in Table 2. The STC-BiLSTM-Attention model achieves the 
highest prediction accuracy in all five groups of data, of which group 4 reaches 93.36%, group 3 and 
group 5 also reach 91.03% and 91.87%, respectively. The average accuracy of STC-bilSTM-Attention is 
89.75%, which is significantly better than all other comparison models, showing excellent time series 
modeling ability and generalization performance. 

Among all comparison methods, the average accuracy of Bi-GRU is 75.12%, which is slightly 
higher than that of BRNN (74.38%) and CNN (72.96%), indicating that the introduction of 
bidirectional structure has a positive effect on improving the accuracy of time series prediction. The 
performance of GRU is relatively stable (71.11%), while the accuracy of the basic LSTM model is the 
lowest in the face of non-uniformly sampled data, indicating that it has obvious shortcomings in 
long-distance dependence and dynamic feature capture. 

The comprehensive analysis shows that STC-BiLSTM-Attention can effectively capture 
short-time mutation and long-range dependence in complex ship maneuver behavior, adapt to 
non-uniform time structure, and has significant advantages in the prediction task of Marine target 
calculation error. 
 
4.2.2 Ablation Experiment 

In order to further analyze the performance contribution of each component module of 
STC-BiLSTM-Attention, this paper designs multiple sets of ablation experiments to gradually remove 
the key structural units and evaluate their impact on the overall prediction accuracy. 

The experimental results are shown in Table 3. The average accuracy of the 
STC-BiLSTM-Attention model with the complete structure is 89.75%, ranking first among all groups. 
After removing STC, the accuracy of the BiLSTM+Attention model decreases to 81.96%, indicating 
that the convolution structure plays an important role in short-term mutation modeling. If further 
remove attention mechanism, retain only BiLSTM, its accurate rate fell to 75.98%, suggests that the 
key point of attention mechanism of heterogeneous data identification has played a positive role. 

The average accuracy of the STC+LSTM model combined with STC and unidirectional LSTM is 
73.14%, which is slightly better than that of TCN-bilSTM (74.42%), which uses TCN to replace STC, 
indicating that STC is more suitable for local feature modeling of maritime target data under 
non-causal structure. The accuracy of the basic LSTM model is only 53.63%, and it is as low as 34.38% 
in group 1, which highlights the serious performance degradation of the traditional model under 
non-uniformly sampled time series data. 

In summary, the performance advantage of STC-bilSTM-attention does not come from a single 
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module, but the collaborative modeling result of STC convolutional layer, bidirectional LSTM 
structure and self-attention mechanism. Short-term mutation characteristics of the structure can 
capture and global dependence, modeling and dynamic focusing on critical moment, to realize high 
precision error prediction under complex mobile scenarios. 

 
4.3 Comparison Experiment with Traditional Single Solver Scheme 

In order to further verify the effectiveness of STC-BiLSTM-Attention model in practical solving 
tasks, this paper compares it with traditional solving schemes such as Kalman filter [5] and manual 
single scheme drawing [4]. The experiment is carried out in four typical scenarios, covering the 
combination of uniform/non-uniform sampling and steady-state/high dynamic maneuverability. The 
evaluation index is the error rate (the proportion of deviation between the predicted position and the 
true position, where lower values indicate higher accuracy). The experimental results are shown in 
Table 4. 

The experimental results are shown in Table 4. In scene 1 (uniform + steady state), the 
performance of the three traditional methods is close, and STC-BiLSTM-Attention has advantages but 
the gap is not large. However, in scenario 2 (non-uniform + steady state), the error of traditional 
methods increases significantly, while STC-BiLSTM-Attention remains below 7%, showing its strong 
robustness to non-uniform sampling structure. 

In the more challenging scene 3 (uniform + high dynamic) and Scene 4 (non-uniform + high 
dynamic), the advantage of STC-BiLSTM-Attention is further expanded. Especially in scene 4, the 
error rate of STC-bilSTM-Attention is 8.52%, which is significantly improved compared with Kalman 
filter (21.36%) and manual single scheme plotting (27.84%). The results validate the mutations on STC 
module on the sensitivity of the response, BiLSTM modeling ability of long-term dependence and 
attention mechanism focusing effect of the synergy of critical moment. 

 
4.4 Verification of Results 

The results show that the STC-BiLSTM-Attention model proposed in this paper is superior to the 
comparison models in all indicators, especially in the identification ability of key mutations caused by 
non-uniform sampling. The introduced Spatio-temporal Convolutional Layer (SCT) significantly 
improves the response ability of the model to local short-term maneuvers, and the attention 
mechanism further enhances the attention to abnormal time slices, so as to maintain high prediction 
accuracy and stability in multiple scenarios. 
 

Table 2: Comparison of Models. 

Model names 

Prediction 

accuracy 

-Group 1 

Prediction 

Accuracy - 

Group 2 

Prediction 

Accuracy - 

Group 3 

Prediction 

Accuracy - 

Group 4 

Prediction 

Accuracy - 

Group 5 

Average 

Accuracy 

STC-BiLSTM-Attention 82.07% 88.42% 91.03% 93.36% 91.87% 89.75% 

BRNN 71.24% 75.02% 78.11% 74.88% 72.65% 74.38% 

CNN 69.33% 
 

71.85% 
73.09% 76.12% 74.41% 72.96% 

GRU 67.82% 69.74% 72.16% 73.89% 71.93% 71.11% 

Bi-GRU 70.03% 74.15% 76.00% 78.28% 77.14% 75.12% 
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Table 3: Ablation Experiments. 

Model Name 

Prediction 

Accuracy - 

Group 1 

Prediction 

Accuracy - 

Group 2 

Prediction 

Accuracy - 

Group 3 

Prediction 

accuracy 

-Group 4 

Prediction 

Accuracy - 

Group 5 

Average 

Accuracy 

STC-BiLSTM-Attention 82.07% 88.42% 91.03% 93.36% 91.87% 89.75% 

BiLSTM + Attention 77.12% 80.96% 82.71% 85.60% 83.43% 81.96% 

BiLSTM 71.33% 74.82% 77.29% 79.54% 76.90% 75.98% 

STC + LSTM 69.50% 72.01% 74.26% 75.88% 74.05% 73.14% 

TCN-BiLSTM 70.46% 73.64% 75.19% 77.81% 75.00% 74.42% 

LSTM 34.38% 48.72% 56.83% 63.35% 62.87% 53.63% 

 
 
Table 4: Comparison of Error Rates Between Traditional Methods and The Proposed Model in 

Different Scenarios. 

 Kalman filter 
Manual single 

scheme plotting 
STC-BiLSTM-Attention 

Scenario 1: Uniform + 

steady state 
5.23% 8.52% 4.15% 

Scenario 2: Non-uniform + 

steady state 
12.47% 18.79% 6.89% 

Scenario 3: Uniform + high 

dynamic 
9.85% 14.63% 6.27% 

Scenario 4: Non-uniform + 

high dynamic 
21.36% 27.84% 8.52% 

 
5. Conclusion Theory 

This paper aims at the practical problems of time series data of maritime targets, such as 
non-uniform sampling, dynamic maneuvering mutation and noise interference. This paper proposes 
a hybrid deep regression model combining Spatio-Temporal Convolution (STC), bidirectional LSTM 
(BiLSTM) and Attention mechanism (STC-bilSTM-Attention). The spatio-temporal convolution layer 
enhances the ability of local short-term feature extraction, the bidirectional LSTM realizes long-term 
dependence modeling, and the attention mechanism focuses on key time point information to achieve 
high-precision modeling and prediction of calculation error under complex navigation behavior. 

The experiments are evaluated on large-scale simulation data and some measured data. The 
results show that the proposed model is significantly better than traditional CNN, GRU, LSTM and 
other models in terms of prediction accuracy, with an average increase of more than 10%. At the same 
time, ablation experiments further verify the importance of the synergistic effect of the three modules 
in improving the performance of the model. Among them, the SCT module has a particularly 
prominent effect on mutation identification, and the self-attention mechanism has a particularly 
obvious adaptability to non-uniform sampling. 

In summary, the STC-BiLSTM-Attention model shows superior robustness and generalization 
ability in non-uniformly sampled dynamic target solving tasks, which has a wide range of 
engineering application potential. Future research can further combine multi-source heterogeneous 
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data (such as AIS, radar, visual information) and graph neural network and other emerging structures 
to expand the adaptability and practicability of the model, and provide technical support for building 
a more intelligent comprehensive perception and prediction system for maritime targets. 
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