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Abstract: In recent years, with the complexity of Marine traffic and the popularization of
asynchronous sensor acquisition, the prerequisite of traditional uniform sampling is broken, and
the data time series presents the non-uniform characteristics of "disordered time interval and
dense mutation features", which makes the Marine moving target calculation face more and more
challenges of non-uniform sampling data. In order to cope with the shortcomings of traditional
methods in abrupt change modeling and time structure adaptability, this paper systematically
analyzes the key influencing factors based on a large number of simulation data, and designs a
hybrid model architecture with the ability of short-term abrupt change response and long-term
dependence modeling. In this paper, we propose a hybrid deep regression model
(STC-BILSTM-Attention) that integrates spatio-temporal convolution, bidirectional LSTM and
attention mechanism, which can realize high-precision adaptive calculation method
optimization. The model uses SCT module to extract local spatio-temporal features, BILSTM to
model long-range dependence, and self-attention mechanism to focus on key time points, so as to
enhance the modeling ability of nonuniform sequence. The experimental results demonstrate that
the proposed method achieves an average prediction accuracy of 89.75% across five independent
datasets. In scenarios characterized by non-uniform sampling and high dynamic
maneuverability, the position calculation error rate is reduced to 8.52%, which is substantially
lower than that of the Kalman filter (21.36%) and the manual calculation approach (27.84%).
Ablation studies further validate that the synergistic interaction between the STC module and the
attention mechanism significantly enhances model accuracy. This highlights the method's
superior capability in addressing tasks involving both short-term abrupt changes and long-term
dependencies, thereby offering robust technical support for auxiliary decision-making under

complex maritime conditions.
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1. Introduction

With growing global marine activities, accurate calculation of marine moving targets is vital for
marine security, resource development, and environmental monitoring. However, constrained by
observation equipment, environmental factors, and unstable data transmission, actual marine target
time-series data often has issues like non-uniform sampling [1], data loss [2], and noise [3], posing

significant challenges to traditional methods.
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Traditional maritime target solvers largely depend on manual plotting [4], working effectively
under complete, uniformly sampled sequential data. However, during missing calculation elements
or target maneuvers, errors often become excessive, requiring manual re-selection of schemes. Yet
manual experience struggles to fully anticipate algorithm-specific errors under unique conditions,
limiting tracking accuracy and system response speed.

Researchers thus propose statistical models like Kalman filter [5] and particle filter [6], which
excel in handling uniformly sampled data to minimize manual intervention in maritime target
solving. However, their performance degrades significantly under non-uniform sampling and
complex maneuvers. Recent deep learning advancements offer new perspectives for time-series
modeling: CNN and LSTM excel in extracting spatial-temporal features, with
ConvLSTM —integrating convolutions into LSTM —widely applied in weather [7] and traffic flow
prediction [8] to achieve notable results.

In marine target detection, researchers explore deep learning applications. Wang et al [9]
developed SALA-LSTM, a deep learning-based marine radar detection method, enhancing local
feature perception via adaptive convolutions to boost accuracy in complex seas. Yang et al [10]
integrated attention with ConvLSTM for coastal water level prediction, improving accuracy and
real-time performance significantly. Sani et al [11] merged radar, AIS, and optical data via GCN to
model ship interactions for multi-target trajectory prediction. Existing methods often rely on
interpolation/resampling for non-uniform data, risking information loss or higher complexity;
adaptive sampling strategies optimize data collection but don't solve non-uniform calculation directly.
Chen et al [12] proposed FRA-LSTM, fusing forward/reverse subnetworks and attention to capture
trajectory timing features for better prediction. Zhou et al [13] designed an LSTM model with
trajectory correlation and temporal attention, filtering redundancies via attention to enhance key
feature capture and prediction performance. Li et al [14] improved YOLOv7-Tiny with RepVGG and
feature fusion for better small-target radar detection, though it lacks adaptability to non-uniform
sampling.

In non-uniform time-series processing, deep learning has seen breakthroughs. For medical data,
Wang et al [15] proposed two approaches: missing data imputation (e.g., multiple imputation) and
direct modeling (e.g., TCN). TCN uses dilated convolutions to capture long-term dependencies but
lacks spatial feature fusion. In marine applications, Zhang et al [16] applied RC-LSTM for China's
offshore SST spatio-temporal prediction, using convolutions for spatial features and LSTM for
time-series, though non-uniform sampling robustness needs improvement. Attention-enhanced
models like Bommidi et al [17]'s TCN-BiLSTM boost wind speed interval prediction accuracy via
dynamic time-step weighting, yet adaptive capacity in dynamic environments remains limited.

Despite advancements in respective fields, limitations remain in handling non-uniform marine
target time-series data. Non-uniform sampling introduces temporal discontinuities, challenging direct
application of traditional models. Meanwhile, highly nonlinear and uncertain maritime target
motions make it difficult for single models to fully capture dynamic characteristics.

To address these challenges, this study proposes STC-BiLSTM-Attention, a hybrid deep
regression model integrating Spatio-temporal Convolution (STC), Bidirectional LSTM (BiLSTM), and
attention mechanisms for precise estimation error prediction. 2D convolutions first extract local
spatio-temporal dependencies to enhance short-term dynamic perception. Stacked BiLSTM then
models long-range dependencies, paired with self-attention to highlight critical time steps and

improve responsiveness to key moments. Finally, LSTM compresses sequences, with fully connected
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layers outputting error predictions. This architecture balances local detail extraction and global
dynamic modeling, suitable for ship prediction error modeling in complex environments.

This method integrates spatio-temporal convolution's spatial feature extraction, BiLSTM's
time-series modeling strengths, and attention mechanisms' key feature focusing to effectively handle
non-uniform time-series data, enhancing maritime target solving accuracy and robustness.
Experiments on simulated/real datasets demonstrate its superior performance in processing
non-uniform data and capturing complex target motions, offering a novel solution for maritime target

solving.

2. Spatio-temporal Convolutional Bidirectional LSTM Attention Network
2.1 Bi-LSTM Model

Bi-directional Long Short-Term Memory network (Bi-LSTM) uses the parallel architecture of
forward LSTM (LSTM) and backward LSTM (LSTM) to construct a bidirectional temporal dependence
modeling system. Among them, the forward LSTM transmits information forward along the sequence
to extract the feature dependencies of historical moments. The backward LSTM backtracks along the
sequence to mine the influence of future moments on the current state. This bidirectional information
interaction mechanism enables the model to fully integrate contextual semantic information and
significantly improve the feature expression ability of sequence data.

The core gating mechanism of Bi-LSTM consists of a forgetting gate, an input gate and an output
gate. Each gating unit outputs the value of the interval [0,1] through the sigmoid activation
function to realize the dynamic regulation of the information flow.

The synergistic effect of the gating mechanisms effectively overcomes the problems of gradient
disappearance and gradient explosion in traditional recurrent neural networks, so that it shows
excellent performance in long sequence data processing and can accurately capture complex time
series dependencies.

Compared with one-way LSTM, the hidden state h, = [h;h;] of Bi-LSTM realizes the deep
fusion of historical and future bidirectional information. In the dynamic modeling of ship
maneuvering process, the proposed architecture can simultaneously capture the route planning
information before turning operation (future dependence) and the state evolution characteristics after
operation (historical dependence).

2.2 Self-attention Mechanism

As a key deep learning technology, the self-attention mechanism leverages the Query-Key-Value
(QKYV) architecture to model temporal correlations in sequences, inspired by human cognitive
selective attention for dynamic key information capture in massive data. It first maps input sequences
into three vector spaces: Query initiates retrieval via targeted queries, Key serves as an information
index for unique identification and efficient lookup, and Value contains the actual features to be
aggregated.

For similarity calculation, dot product or cosine similarity measures Query-Key associations. To
address gradient vanishing from high dimensions, Scaled Dot-Product Attention normalizes dot
products by v D (vector dimension) via Softmax, generating attention weights that reflect timestep
importance in the task —higher weights indicate greater contribution. Finally, weighted summation of
Values adaptively aggregates sequence information, capturing long-range dependencies and

dynamically focusing on critical timesteps to enhance complex sequence processing.
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2.3 Spatio-Temporal Convolutional Layer (SCT)

The spatio-temporal convolutional layer (SCT) serves as the model's core for handling
multi-dimensional time-series data. Via temporal local feature extraction and spatial cross-feature
correlation modeling, it enables multi-scale analysis of maritime target motion states. Designed to
align with the spatio-temporal coupling nature of ship motion—e.g., course-change/position-offset
dynamics, speed-adjustment/time-interval correlations—it feeds high-quality inputs with local details
and cross-feature dependencies into subsequent BiLSTM layers for long-range dependency modeling.

SCT's core advantage lies in deep spatio-temporal feature coupling. Temporally, 5- and 3-step
convolution kernels adapt to varying ship maneuver durations. Spatially, kernels process
multi-dimensional sensor data to model geometric relationships between position offset, speed,
heading, and time intervals (e.g., heading's impact on position offset at constant speed). The final
T/2x192 feature map—concatenating 64+128 channels from two convolutional layers—transforms
non-uniform data into hierarchical spatio-temporal semantic representations.

Unlike traditional TCN focusing on long-term time-series dependencies, SCT prioritizes local
mutation analysis of multi-feature time-series data. Its 1D convolutions eschew causal
constraints/dilation, instead adapting to non-uniform time intervals and sensor feature spatial
correlations via multi-scale kernel groups and pooling. This design enables SCT to better capture
instantaneous cross-feature correlations (e.g., heading shifts with position jumps during sharp turns)
in short-term abrupt change scenarios like ship maneuvers—scenes where TCN's strength in uniform
long-series trend prediction is less applicable.

As the first stage in the model's three-level processing pipeline, SCT is critical for feature
preprocessing, scale adaptation, and pattern separation. It first converts 12D raw data into
spatio-temporal semantic feature maps, filtering noise and enhancing key motion features. Second,
pooling downsamples time steps from 20 to 10 to meet Bi-LSTM computational efficiency needs.
Finally, it distinguishes constant velocity (low activation) and maneuvering (high activation)
segments via feature response intensity, providing key timestep cues for the self-attention layer. This
design enables SCT to form an efficient collaborative chain with Bi-LSTM and self-attention —from
local spatio-temporal feature extraction to long-range dependency modeling and dynamic key

information focusing —to jointly address complex maritime motion solving challenges.

2.4 Spatio-Temporal Convolutional Bidirectional LSTM Attention Network
(STC-BiLSTM-Attention)

However, Bi-LSTM, self-attention mechanism and TCN still have limitations when applied
separately. The organic integration of the three can give full play to their respective advantages and
effectively solve the problem of solving moving targets at sea under non-uniformly sampled time
series data.

Building on this, we construct the STC-BiLSTM-Attention network to achieve more accurate
target solutions. While Bi-LSTM, self-attention, and TCN excel in their domains, single models face
limitations with non-uniform marine target data: Bi-LSTM lacks explicit time interval modeling,
self-attention may overlook long-interval key info, and TCN struggles with irregular time interval
changes. By organically integrating their strengths, the proposed STC-BiLSTM-Attention network
effectively addresses non-uniform sampling challenges, enhancing solving accuracy and robustness
for maritime motion targets.

Aiming at ship behavior in multivariable dynamic sequence of complex evolution process and
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calculates the error prediction of nonlinear characteristic, this paper proposes a Spatio-Temporal
Convolution (STC) network combined with Bidirectional Long Short-Term Memory (BSTM) network.
BiLSTM) mixed with Attention mechanism (Attention) of neural network structure, referred to as on
STC - BiLSTM - Attention. This structure can simultaneously model global change pattern and local
temporal dependence, and automatic focusing on the key segments of time, so as to improve
prediction accuracy and generalization ability model.

This model consists of the following five main modules:

(1) Input layer and data preprocessing

The input is a multi-dimensional feature sequence in a time window with the shape (T,F), where
T is the time step (e.g., 20) and F is the number of key variables after feature selection (e.g., 10). All
feature values are normalized by MinMaxScaler, and the target variable (estimation error) is also
standardized to facilitate the stable training of the model.

(2) Spatio-Temporal Convolutional Module (STC)

For mining the short-term time change and characteristics between local coupling mode, first
will reshape the input sequence for the three-dimensional tensor, then USES the two-dimensional
convolution (Conv2D) slide for joint operations. (T,F,1) This convolutional layer can be regarded as a
filter acting on both time and variable dimensions to identify "behavior patterns” in local feature
segments. Through MaxPooling2D down sampling, compression time step of information
redundancy and denseness of enhanced features expression.

(3) Bidirectional LSTM module (BiLSTM)

To capture ships path dependency information for a long time, the evolution of network design
for two layer stacked two-way LSTM, node contains 128 and 64 units, respectively. The structure on
the direction of forward and reverse two times of coding sequence information, effectively ease the
one-way LSTM information loss problem. Each layer after joining Dropout layer (discard rate 0.4), in
order to enhance robustness of the model and prevent the fitting.

(4) Self-Attention

Due to the different time points in the time series is finally forecast the influence degree of the
inconsistent, model introduced from attention mechanism, the output power of the LSTM layer with
distribution, which focused on the key dynamic characteristics of the time period. Attention results
with original LSTM output for Mosaic (Concatenate), in the ability of said while maintaining the
original time structure information.

(5) The Output Layer

After joining together, the time sequence of said further through a layer of LSTM unit (32) is
compressed, then output by the Dense layer as a continuous value target variable (that is, the
calculation error) prediction results. Model USES the mean square error (MSE) as a loss function
training, the optimizer for adaptive vector of Adam.

On average, on STC - BiLSTM - Attention model both said ability strong, full time structure
modeling, feature advantages of self-focusing, suitable for deployment in intelligent aided
decision-making system, maritime simulation platform and anomaly detection, etc. The actual

application scenario. Its specific structure as shown in Figure 1.

143



Innovation Series: Advanced Science

input_layer (InputLayer)

Qutput shape: (None, 20, 10}

reshape (Reshape)

Input shape: {None, 20, 10)

Qutput shape: {Nene, 20, 10, 1)

convad (Conv2D)

Input shape: {(None, 20, 10, 1) | Output shape: {None, 20, 10, 32)

max_pooling2d (MaxPooling2D)

Input shape: (None, 20, 10, 32) | Qutput shape: {Nene, 10, 5, 32)

reshape_1 (Reshape)

Input shape: (None, 10, 5, 32) Cutput shape: (None, 50, 32)

bidirectional (Bidirectional)

InpLt shape: (None, 50, 32) | Output shape: {None, 50, 256)

dropout (Dropout)

Input shape: (None, 50, 256) | Output shape: (None, 50, 256)

bidirectional_1 (Bidirectional)

Input shape: {None, 50, 256) | Output shape: (None, 50, 128)

dropout_1 (Dropout)

Input shape: {None, 50, 128) Output shape: {None, 50, 128)

attention (Attention)

Input shape: [(Mone, 50, 128), (None, 50, 128)] | Cutput shape: (None, 50, 128)

!

concatenate (Concatenate)

Input shape: [(None, 50, 128), (None, 50, 128)] | Output shape: (None, 50, 256)

Input shape: (None, 50, 256) | Cutput shape: {None, 32)

dense (Dense)

Input shape: (None, 32) | Output shape: {None, 1)

Figure 1: Method Flow of The Model Constructed in This Paper.

3. Simulation Data Generation Model
3.1 Overview of Model Setup

Vol. 2 ¢ Issue 3

Data generation module is designed to simulate non-uniform sampling trajectory of the sea ship,

generates true state (position, speed, heading), mobile label direct flights (constant speed, steering,

deceleration) and observation error (distance, direction, azimuth) of multidimensional data set.

Module through parametric configuration, random event injection, dynamic error modeling methods,

such as repetition of the complexity of the real-ship motion in the scene with non-uniform sampling
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feature, for subsequent target training and validation of the calculating model provides high quality

data to support.

3.1.1 Overall Process Structure

The whole data generation process revolves around the generation of ship track. Each round of
simulation generates a pair of ship trajectories, calculates the relative relationship in space and time,
labels the segment information, and injects the observation error related to the target distance. In the
end, after the amount of data required, system incorporating simulation results for structured data
table, so that subsequent calls and algorithm evaluation model using. The key components of the
process include trajectory generation, behavior injection, temporal sampling, location calculation,

state alignment, label generation, and observation error modeling, as detailed in Figure 2.
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Figure 2: Data Generation Module Architecture Diagram.

3.1.2 Flight Path Simulation

The trajectory of each vessel is by default composed of N < 1200 discrete time steps, sailing for
approximately 20 minutes. The initial heading Angle 6, is uniformly sampled from the interval
[0,2m), and the initial speed v, is randomly selected from the set range [Vyin, Vmax]. These parameters
determine the initial direction of motion and propulsion speed of the ship, ensuring that each
simulation is different from the other.

The course angle and speed of the ship can be dynamically adjusted in the flight, formation has
the characteristics of trajectory. All state variables (position, speed, heading, mobile) are updated in
each time step, and ultimately the organization is structured sequence data.

3.1.3 Modeling Maneuvering Behavior

In order to simulate the motion diversity of the actual ship, the system randomly injected
steering or acceleration and deceleration events during the trajectory generation. The steering
behavior is realized by adjusting the heading Angle within a certain time window, and the Angle
variation range is set to [15°,45°] ,and the number of continuous steps is set to Ty, = 100 £ 20.

145



Innovation Series: Advanced Science Vol. 2 ¢ Issue 3

Heading ang]le of the angle of the increment/decrement for each step:
In trajectory stochastic trajectory diversity, to enhance system into a turn or deceleration
behavior. Among them:
The Angle change of the steering behavior is:
40 = ot
Tturn
The speed increment of the acceleration and deceleration behavior is:
Av=xa-v, (a=0.2)
The duration of both types of behaviors was T = 100 + 20 steps, and the interval between

behaviors was maintained at least 100 steps.

3.1.4 Spatial Advance and Position Calculation
Position update based on the current course Angle and speed, track is advancing through the
current course Angle and speed calculating two-dimensional position change, perspective
transformation is as follows:
¢ =90" -0,
Displacement updating formula is:
Xep1 = X¢ + clip(vg - cose,)
Yer1 = Ye + clip(v; - sing,)
Where clip() represents the limit on the maximum moving distance in a single step, which is
used to limit the maximum moving distance in a single step to not exceed the set value (such as 2.0

meters) to avoid the jump change in the simulation results.

3.1.5 Relative State Calculation

For each time sampling point, the system calculates the spatial relationship between ship 1 and
ship 2, which includes two key variables:

Relative distance: d,

d; = [ =22+ Of = 392

Relative azimuth: g,
. = [atan2(x! — x5, yf — y5)]  mod 360°
These two pieces of information constitute the core observations that can be obtained by the
analog perception system, and are widely used in target localization and collision avoidance strategy

modeling.

3.1.6 Dynamic Error Modeling and Observation Construction

To simulate the real sensor observation uncertainty, existing in the system design a set of
dynamic error injection mechanism related to the distance. The error acts on the following variables:

The relative distance d; error follows a normal distribution:

g4 ~ N (0,0.1)

The heading angle and azimuth angle errors vary according to the target distance, and the error

range is as follows:
[-0.5°,0.5°],d, <100

eo(dy) = {[-r(d,),r(d,)], 100 < d, < 1500
[—2.0°,2.0°],d, > 1500
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Where the error growth function is:

r(d,) = 0.5 + (w) 15
1400
The ship speed error is:
e, ~ U(—0.5,0.5)

The above-mentioned errors respectively act on the fields such as "Observation Distance",

"

non "non

Observing ship 1 Heading ", " Observe boat 1 speed ", " Observe the relative azimuth ", etc., to form
the simulated output of the perception system.

3.1.7 Time Interval Division and State Sampling

The total duration of the trajectory is set to 1200 seconds. Time sampling by generating more
time period (interval), unless otherwise stipulated in the track events, the length of each time period
in the [60,180] seconds between random sampling. If any motor behavior, keep its continuous period
of time, the rest of the non-motor vehicle period were randomly divided, form the final time sampling
point. The end of each time period is used as the state observation point to form the time series
feature.
3.1.8 Segmentation Tags Generated

To achieve multi-stage prediction and combination strategy testing, each trajectory is randomly
divided into 1 to n segments, and a unique "segment label" is assigned to each segment. The
segmentation function executes multiple rounds of random trials under the constraint of a minimum
segment length (e.g., 4 minutes, corresponding to 240 steps), and returns the optimal segmentation
scheme that meets the conditions. The label ends up as an integer (1,2,..., n) tags are attached to each

sample.

3.2 Model parameters
The parameter system recorded by the simulation program comprehensively covers the
multi-dimensional characteristics of ship motion. Through meticulous parameter design, it achieves

high-fidelity simulation of real sea conditions, as detailed in Table 1:
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Table 1: Model Parameters Generated by The Simulation Program.

Parameter categories Parameter names

Basic metadata Run ID

Base metadata Time

Ship 1 (target) Ship 1_X
Boat1_Y
Boat 1 heading

Boat 1 speed

Boat 1 maneuver

Boat 2 (reference Boat2_X
boat)
Boat2_Y
Boat 2 heading

Boat 2 speed

Boat 2 Maneuver
Relative motion Actual distance
parameter

Relative azimuth

Observations (with Observation
error) distance

Observing ship 1

Heading
Observe boat 1
speed
Observe Boat 2
heading

Observe the relative
azimuth
Segmentation and Segment labels

error parameters

Heading error
(implied)
Azimuth error
(implied)

3.2.1 Engineering Significance of Parameter Configuration

Type
True value

True value
True value
True value
True value

True value

Real value

True value

True value
True value
True value
Real value

True value
True value
Observations
Observations
Observations
Observations
Observations
Segment
information
Error
parameters

Error

parameters

1) Multi-dimensional coupling modeling

Vol. 2 ¢ Issue 3

Description

A number that uniquely identifies each
simulation run

Timestamp of the trajectory point (in minutes)
X-axis coordinates of boat 1 (true position)
Y-axis coordinates of boat 1 (true position)

True heading Angle of boat 1 (degrees, 0-360°)
True speed of Boat 1 (in knots or meters per
second)

Boat 1's maneuver type label

X-axis coordinates of Boat 2 (true position)

Y-axis coordinates of Boat 2 (true position)

True heading Angle of Boat 2 (degrees, 0-360°)
True speed of Boat 2 (same units as above)

Boat 2's Maneuver type label

The true straight-line distance between the two
ships (in meters or nautical miles)

Boat 2's azimuth relative to Boat 1 (degrees,
0-360°)

The observed distance after injecting the
distance error

Ship after injecting heading error 1 Observe
heading

Ship 1 observed velocity after injection of
velocity errors

Ship after injecting heading error 2 Observe
heading

Observed relative azimuth Angle after injecting
azimuth error

Track segment number (to distinguish between
different voyage phases)

Deviation of course observations from true
values (boat 1/ boat 2)

Deviation of the relative azimuth observation

from the true value

Through the dynamic association of "course-speed-position” (for example, steering is

accompanied by speed adjustment and position offset), it ensures that the generated data conforms to

the kinematics of the ship, and avoids the physical irrationality of synthetic data.
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2) Non-uniform sampling simulation

The different setting of the time interval in the maneuvering and non-maneuvering segments
(see Section 3.1.7) directly corresponds to the high-frequency sampling strategy of the sensor when
the target state changes dramatically, which enhances the fit between the data and the actual scene.

3) The authenticity of error mechanism

The range-dependent error model refers to the real sensor characteristics (e.g., radar ranging
accuracy decreases with distance), which makes the simulation data more generalized and ensures

the reliability of the model in real sea conditions.

3.2.2 Data Scale and Distribution

Sample size: A total of 5000 independent samples were generated, and each group contained 2
ships and trajectory data within 1200 seconds, with a total data volume of about 600 000 records.

Scenario coverage: It included steering maneuver, acceleration and deceleration maneuver, and
pure direct flight scenarios. The error level was divided into short range (<500 meters), medium range
(500-1500 meters), and long range (>1500 meters) according to the distance to ensure the diversity and
balance of the training data.

Through the above parameter design, the simulation model realizes the multi-physics coupling
modeling of the maritime target motion, provides training and testing data close to the real scene for
the STC-BiLSTM-Attention model, and supports the verification of its adaptive solving ability in the

non-uniform sampling environment.

4. Experimental data processing and analysis

Hold to verify the proposed STC BiLSTM - Attention model under non-uniform sampling data of
sea targets forecast the effectiveness and superiority of calculating error, this paper designed a series
of experiments, simulation data to construct, contrast scheme evaluation and module performance
analysis, and many other aspects. The experiments are carried out from both qualitative and
quantitative perspectives, and the performance of the model is comprehensively evaluated by

combining visualization and numerical analysis.

4.1 Preprocessing of Simulation Data

In order to ensure the accuracy of the algorithm evaluation and the consistency of the
experimental process, this paper conducts systematic data preprocessing on the original trajectory
data, which mainly includes data reading, cycle and segment division, algorithm combination
generation, input construction and other steps.

Firstly, multiple simulated or real ship trajectory data are read from the generated simulation
data. The data format contains fields such as "run ID" and "segment label" to identify the period to
which each record belongs and its position in the period. After reading, the data is sorted according to
the run ID and the time field, and the index is reconstructed to ensure the consistency of the time
series.

Then, the system partitions each run period (i.e., each complete navigation trajectory) according
to its "segment label" field. Each cycle is further subdivided into several segments, each
corresponding to a continuous navigation segment or maneuver behavior. On this basis, the
preprocessing module constructs all possible combinations of algorithms. Given that the current cycle

contains n segments and the number of trajectory estimation algorithms available to the system is m,
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the total number of combinations is. m"In this study, six different traditional single plotting
algorithms have been incorporated into the model, so the number of combinations can reach
hundreds.

In the data preparation stage, each trajectory needs to construct its input data. For the first
segment in each combination, the system selects the first four data from the beginning of the segment
as the initial input. For the non-first segment, according to the requirements of the selected algorithm,
the latest 1 or 2 observations are extracted from the end of the previous segment and concatenated to
the previous segment to ensure the continuity of the algorithm state. Especially, if some algorithms
have strong inertia dependence (e.g., algorithms using sliding Windows or filters), the system will
automatically provide them with longer historical context.

After completing the input construction, the system executes the specified algorithm function of
each segment in turn for each combination, and records the meta-information such as running time,
segment length, and the number of the algorithm used. Combinations that fail to run will be
automatically skipped and the exception type will be recorded to ensure the robustness of the
processing flow. The running results of all combinations are summarized and saved, including the
complete trajectory estimation output file (which can be saved in batches) and the summary statistics
file for each combination, which is convenient for subsequent algorithm comparison and performance
analysis.

The design of the preprocessing flow ensures the consistency of algorithm evaluation and the
scalability of high-throughput experiments, which is the core support module of the experimental
system in this paper.

4.2 Model Validation

Two kinds of data sources are used to verify the model: one is the large-scale simulation data
generated by parameter control and noise modeling, and the other is the measured ship sailing data.
The simulation data are generated by the model in Section 3. Each round of simulation contains the
trajectories of two ships within 1200 seconds, covering typical behaviors such as constant speed
straight sailing, acceleration and deceleration, and left-right turning, and adding dynamic errors
related to the target distance. A total of 5000 sets of samples were generated to ensure the diversity of
different environments and behavior distributions.

In order to comprehensively evaluate the prediction performance of the fused STC-BiLSTM
model under different calculation combination strategies, in this study, we designed an accuracy test
mechanism based on the average ranking of the real value and the predicted value. Specific approach
is to first data extracted from multiple simulation results, and for each operation within the ID label
each combination of the real value and predictive value are calculated respectively the average. On
this basis, all the combinations in each sailing cycle are sorted according to the average value of the
real value and the average value of the predicted value. We will forecast the combination of the
average ranked first as the operation model of optimization results, and further determine whether
the combination is an average sort of real value first, if it is, argues that the predicted results are
accurate. The overall prediction accuracy was calculated by counting the ratio of the number of
accurate predictions to the total number of runs. This method can not only quantitative prediction
effect under the different combination strategies, also have a certain robustness, suitable for
complicated sea conditions and inhomogeneous observation model under the condition of optimizing

analysis.
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The same training-testing partition (80% training, 20% testing) was used for all models, and the
input length and feature consistency were maintained. In the validation group, five sets of data were

used for experimental average to avoid the contingency caused by initialization.

4.2.1 Model Comparison

In order to systematically evaluate the performance of STC-BiLSTM-Attention model under
different architectures, this paper compares it with traditional and mainstream neural network
models, including: Bidirectional Recurrent neural Network (BRNN), Convolutional Neural Network
(CNN), Gated Recurrent Unit (GRU), Bidirectional GRU (Bi-GRU), and basic LSTM model. All
models used the same training set, feature input, hyperparameters and evaluation metrics. The
experiment was repeated on five independent datasets, and the average accuracy was calculated.

The comparison results are shown in Table 2. The STC-BiLSTM-Attention model achieves the
highest prediction accuracy in all five groups of data, of which group 4 reaches 93.36%, group 3 and
group 5 also reach 91.03% and 91.87%, respectively. The average accuracy of STC-bilSTM-Attention is
89.75%, which is significantly better than all other comparison models, showing excellent time series
modeling ability and generalization performance.

Among all comparison methods, the average accuracy of Bi-GRU is 75.12%, which is slightly
higher than that of BRNN (74.38%) and CNN (72.96%), indicating that the introduction of
bidirectional structure has a positive effect on improving the accuracy of time series prediction. The
performance of GRU is relatively stable (71.11%), while the accuracy of the basic LSTM model is the
lowest in the face of non-uniformly sampled data, indicating that it has obvious shortcomings in
long-distance dependence and dynamic feature capture.

The comprehensive analysis shows that STC-BiLSTM-Attention can effectively capture
short-time mutation and long-range dependence in complex ship maneuver behavior, adapt to
non-uniform time structure, and has significant advantages in the prediction task of Marine target

calculation error.

4.2.2 Ablation Experiment

In order to further analyze the performance contribution of each component module of
STC-BiLSTM-Attention, this paper designs multiple sets of ablation experiments to gradually remove
the key structural units and evaluate their impact on the overall prediction accuracy.

The experimental results are shown in Table 3. The average accuracy of the
STC-BiLSTM-Attention model with the complete structure is 89.75%, ranking first among all groups.
After removing STC, the accuracy of the BiLSTM+Attention model decreases to 81.96%, indicating
that the convolution structure plays an important role in short-term mutation modeling. If further
remove attention mechanism, retain only BiLSTM, its accurate rate fell to 75.98%, suggests that the
key point of attention mechanism of heterogeneous data identification has played a positive role.

The average accuracy of the STC+LSTM model combined with STC and unidirectional LSTM is
73.14%, which is slightly better than that of TCN-bilSTM (74.42%), which uses TCN to replace STC,
indicating that STC is more suitable for local feature modeling of maritime target data under
non-causal structure. The accuracy of the basic LSTM model is only 53.63%, and it is as low as 34.38%
in group 1, which highlights the serious performance degradation of the traditional model under
non-uniformly sampled time series data.

In summary, the performance advantage of STC-bilSTM-attention does not come from a single
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module, but the collaborative modeling result of STC convolutional layer, bidirectional LSTM
structure and self-attention mechanism. Short-term mutation characteristics of the structure can
capture and global dependence, modeling and dynamic focusing on critical moment, to realize high

precision error prediction under complex mobile scenarios.

4.3 Comparison Experiment with Traditional Single Solver Scheme

In order to further verify the effectiveness of STC-BiLSTM-Attention model in practical solving
tasks, this paper compares it with traditional solving schemes such as Kalman filter [5] and manual
single scheme drawing [4]. The experiment is carried out in four typical scenarios, covering the
combination of uniform/non-uniform sampling and steady-state/high dynamic maneuverability. The
evaluation index is the error rate (the proportion of deviation between the predicted position and the
true position, where lower values indicate higher accuracy). The experimental results are shown in
Table 4.

The experimental results are shown in Table 4. In scene 1 (uniform + steady state), the
performance of the three traditional methods is close, and STC-BiLSTM-Attention has advantages but
the gap is not large. However, in scenario 2 (non-uniform + steady state), the error of traditional
methods increases significantly, while STC-BiLSTM-Attention remains below 7%, showing its strong
robustness to non-uniform sampling structure.

In the more challenging scene 3 (uniform + high dynamic) and Scene 4 (non-uniform + high
dynamic), the advantage of STC-BiLSTM-Attention is further expanded. Especially in scene 4, the
error rate of STC-bilSTM-Attention is 8.52%, which is significantly improved compared with Kalman
filter (21.36%) and manual single scheme plotting (27.84%). The results validate the mutations on STC
module on the sensitivity of the response, BILSTM modeling ability of long-term dependence and

attention mechanism focusing effect of the synergy of critical moment.

4.4 Verification of Results

The results show that the STC-BIiLSTM-Attention model proposed in this paper is superior to the
comparison models in all indicators, especially in the identification ability of key mutations caused by
non-uniform sampling. The introduced Spatio-temporal Convolutional Layer (SCT) significantly
improves the response ability of the model to local short-term maneuvers, and the attention
mechanism further enhances the attention to abnormal time slices, so as to maintain high prediction

accuracy and stability in multiple scenarios.

Table 2: Comparison of Models.

Prediction Prediction Prediction Prediction  Prediction

Model names accuracy Accuracy - Accuracy -  Accuracy -  Accuracy - Average
-Group 1 Group 2 Group 3 Group 4 Group 5 Accuracy
STC-BiLSTM-Attention 82.07% 88.42% 91.03% 93.36% 91.87% 89.75%
BRNN 71.24% 75.02% 78.11% 74.88% 72.65% 74.38%
CNN 69.33% 71.85% 73.09% 76.12% 74.41% 72.96%
GRU 67.82% 69.74% 72.16% 73.89% 71.93% 71.11%
Bi-GRU 70.03% 74.15% 76.00% 78.28% 77.14% 75.12%
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Table 3: Ablation Experiments.

Prediction Prediction Prediction Prediction Prediction Average
Model Name Accuracy - Accuracy - Accuracy - accuracy Accuracy -
Group 1 Group 2 Group 3 -Group 4 Group 5 Accuracy
STC-BiLSTM-Attention 82.07% 88.42% 91.03% 93.36% 91.87% 89.75%
BiLSTM + Attention 77.12% 80.96% 82.71% 85.60% 83.43% 81.96%
BiLSTM 71.33% 74.82% 77.29% 79.54% 76.90% 75.98%
STC + LSTM 69.50% 72.01% 74.26% 75.88% 74.05% 73.14%
TCN-BiLSTM 70.46% 73.64% 75.19% 77.81% 75.00% 74.42%
LSTM 34.38% 48.72% 56.83% 63.35% 62.87% 53.63%

Table 4: Comparison of Error Rates Between Traditional Methods and The Proposed Model in

Different Scenarios.

Manual single
Kalman filter STC-BiLSTM-Attention
scheme plotting

Scenario 1: Uniform +

5.23% 8.52% 4.15%
steady state
Scenario 2: Non-uniform +
12.47% 18.79% 6.89%
steady state
Scenario 3: Uniform + high
9.85% 14.63% 6.27%
dynamic
Scenario 4: Non-uniform +
21.36% 27.84% 8.52%

high dynamic

5. Conclusion Theory

This paper aims at the practical problems of time series data of maritime targets, such as
non-uniform sampling, dynamic maneuvering mutation and noise interference. This paper proposes
a hybrid deep regression model combining Spatio-Temporal Convolution (STC), bidirectional LSTM
(BiLSTM) and Attention mechanism (STC-bilSTM-Attention). The spatio-temporal convolution layer
enhances the ability of local short-term feature extraction, the bidirectional LSTM realizes long-term
dependence modeling, and the attention mechanism focuses on key time point information to achieve
high-precision modeling and prediction of calculation error under complex navigation behavior.

The experiments are evaluated on large-scale simulation data and some measured data. The
results show that the proposed model is significantly better than traditional CNN, GRU, LSTM and
other models in terms of prediction accuracy, with an average increase of more than 10%. At the same
time, ablation experiments further verify the importance of the synergistic effect of the three modules
in improving the performance of the model. Among them, the SCT module has a particularly
prominent effect on mutation identification, and the self-attention mechanism has a particularly
obvious adaptability to non-uniform sampling.

In summary, the STC-BiLSTM-Attention model shows superior robustness and generalization
ability in non-uniformly sampled dynamic target solving tasks, which has a wide range of

engineering application potential. Future research can further combine multi-source heterogeneous
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data (such as AIS, radar, visual information) and graph neural network and other emerging structures
to expand the adaptability and practicability of the model, and provide technical support for building

a more intelligent comprehensive perception and prediction system for maritime targets.
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