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Abstract: Dynamic Movement Primitives (DMPs) are widely used in robotic trajectory
generation and imitation learning due to their stability, parameter tunability, and generalization
capability. However, most existing DMP-based obstacle avoidance methods rely on conventional
artificial potential fields, which often suffer from trajectory oscillations, shape distortion, and
loss of demonstrated features in complex environments. To address these issues, this paper
proposes an obstacle-avoidance trajectory generation method for DMPs based on an improved
artificial potential field. By incorporating an exponential distance attenuation function and a
velocity-direction modulation mechanism into the coupling term, the proposed method achieves
improved continuity and stability of the obstacle avoidance force in both spatial and directional
domains, enabling adaptive local deformation of demonstrated trajectories. While preserving the
original convergence property and modular structure of DMPs, the proposed approach
significantly enhances trajectory smoothness and obstacle avoidance stability in both single- and
multi-obstacle scenarios. Simulation results based on handwritten trajectory data demonstrate
that the proposed method outperforms the conventional artificial potential field and
steering-angle methods in terms of minimum error and root-mean-square error (RMSE), while

better preserving demonstrated trajectory features.
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1. Introduction

With the rapid development of intelligent manufacturing and service robotics, the demand for
autonomous robotic manipulation in industrial assembly, collaborative operations, and complex
environments has been steadily increasing. Traditional robot trajectory planning methods typically
rely on predefined models, static environment assumptions, or strict dynamic constraints, which
limits their adaptability to real-time obstacle avoidance and flexible trajectory generation in dynamic
environments. Learning from Demonstration (LfD), as an efficient imitation learning paradigm,
enables robots to autonomously acquire new skills by imitating human-provided demonstration
trajectories, allowing rapid adaptation to diverse and dynamic industrial scenarios without frequent
manual reprogramming [1,2].

Among various LfD approaches, Dynamic Movement Primitives (DMPs) have been widely
adopted for robotic motion generation due to their stable convergence properties, parameter
tunability, and strong generalization capability [3]. DMPs can reproduce target motions from
demonstrations and incorporate external coupling terms, making them suitable for real-time obstacle

avoidance and dynamic environment adaptation [4]. However, the coupling terms in classical DMPs
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are usually manually designed and often struggle to simultaneously ensure obstacle-avoidance
stability, trajectory smoothness, and generalization performance.

Standard DMP-based obstacle avoidance methods exhibit limited adaptability in
high-dimensional or constrained workspaces, and may suffer from unstable avoidance forces,
unsmooth trajectories, or insufficient responsiveness to dynamic obstacles. To address these
limitations, this paper proposes a DMP trajectory generation method based on an improved artificial
potential field coupling term, aiming to enhance trajectory reproduction capability and

obstacle-avoidance stability in complex environments.

2 Theoretical Description of the Improved DMP
2.1 DMP Theory
Dynamic Movement Primitives (DMPs) are a robot motion generation method based on
dynamical systems. The basic form of the DMP system is defined as:
{n‘z = a,(By(g —y) —v) + f(x) o
Yy =v
where y denotes the current position, v = y denotes the velocity, g denotes the goal point, t
is the temporal scaling factor that controls the execution speed of the trajectory, a,,f, is the damping
coefficient, The forcing term f(x) is used to learn the motion features contained in the demonstrated
trajectory, ensuring that the generated trajectory follows the demonstrated curve. The canonical
system in the DMP framework is defined as:
TX = — QX (2)
where x is the internal phase variable that decays from 1 to 0 over time, and a, is the
coefficient controlling the decay speed. x ensures that the forcing term changes with time and
naturally decays as the trajectory approaches the end point.

The forcing term in traditional DMPs adopts a linear combination form:

Z?’:l P (0w

xX) = x(g — 3
f(x) (o) (9 — o) 3)

where the basic functions are Gaussian functions:
Y;(x) = exp (—h;(x — ¢;)?) 4)

where c; denotes the center of the basis function, h; denotes the width parameter, w; and

denotes the weight, which must be obtained by learning from the demonstration trajectory. Given a

demonstration trajectory (Vaemo: Ydemor Vaemo), the target forcing term of the DMP can be expressed
as:

frarget &) = TVaemo () = @y [By (9 = Yaemo (t)) = Vaemo ()] (5)

which Pgemo = Vgemo is obtained by substituting the demonstrated trajectory into the DMP

dynamic equation and solving backward. The weights w; can be computed using local weighted

regression (LWR).

2.2 Improved Artificial Potential Field Method
The artificial potential field (APF) method is a classical robot trajectory planning method, first

proposed by Khatib and widely applied in robot trajectory planning [5]. It is defined as:
2

(L _1 d d
Fop() = z(m‘d—o) » d0) <dy )
0, d(y) = d,
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where d(y) = ||y — yopsll denotes the distance between the robot and the obstacle, d, denotes
the action radius, and 7 denotes the gain coefficient. A smaller distance results in a larger force, and
when the distance exceeds the action range, no force is applied.

In conventional potential field methods, the repulsive term depends solely on distance, which
may cause abrupt force variations and severe trajectory oscillations. To address these issues and
integrate obstacle avoidance into DMPs, an improved APF coupling term (iAPF-DMP) is proposed by
incorporating exponential distance attenuation and a velocity influence factor. the proposed method

jointly considers both distance and velocity, it is defined as

C_kz” w exp(_ IInII) o
i=1 v||7”z|| do

where k denotes the gain coefficient of the coupling term, r; = 0 —p; denotes the relative

position vector, o denotes the obstacle position, p denotes the current robot position, d, denotes the
influence radius of the obstacle, and w,, is defined as:
Wv=1+l-max(0,i-ﬂ) (8)
vl 1lo = pll
where A denotes the velocity sensitivity coefficient and w,used to adjust the influence of
velocity on the coupling term. The improved transformation system is therefore written as:
= ay(By(g—y)—v)+ ) +C 9
where C represents the additional force coupling term added to the DMP.

Adjusted trajectory

goal

Figure 1: Artificial Potential Field Method.

Figure 1 illustrates the trajectory adjustment process of DMP combined with the improved
artificial potential field method for obstacle avoidance. When the robot moves along the
demonstrated trajectory in the direction of its velocity vector v, it is affected by the repulsive force
F.p generated by nearby obstacles. This repulsive force typically varies with the distance and the v
between the trajectory and the obstacle, ensuring stronger repulsion as the robot gets closer to the
obstacle, thereby enabling trajectory adjustment. The adjusted trajectory balances the two core goals
of DMP obstacle avoidance: maintaining progress toward the target point and achieving collision-free

motion through real-time potential field modulation.

3. Experimental Study

The experiments in this section aim to quantitatively analyze the effectiveness of the method
introduced in Chapter 3. The trajectories in the handwriting dataset are used as demonstration data
[6]. The proposed method is compared with the traditional artificial potential field method
(APF-DMP) and the classical steering-angle method (Steer-DMP).
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Figure 2: Comparison for letter J.

Figure 2 compares the regenerated obstacle-avoidance trajectories produced by the traditional
artificial potential field method, the steering-angle method, and the proposed improved potential
field method. In this experiment, the same demonstration trajectory is used, with obstacles located at
(5.2, 2.5) and (-2, -8) and radii of 1.5 and 1.1, respectively. Although both the traditional potential
field and steering-angle methods can achieve obstacle avoidance, they exhibit notable limitations,
including loss of key trajectory features in obstacle regions. The traditional potential field method
significantly degrades trajectory smoothness, while the steering-angle method causes large local
deformations and may introduce premature avoidance, resulting in insufficient feature preservation.
These issues arise because the repulsive force in the traditional potential field method depends solely
on spatial distance, leading to unstable directional disturbances near obstacle boundaries, whereas the
steering-angle method may apply strong corrections before collision risk becomes significant. In
contrast, the proposed method better preserves the overall trajectory shape while maintaining
smoothness and the characteristic “]” pattern during obstacle avoidance.

The results show that the proposed method can avoid obstacles under different scenarios, fully
demonstrating its effectiveness. To more intuitively present the trajectory learning ability and
feature-preservation capability, the minimum error and RMSE are used as evaluation indicators for

quantitative analysis, and the results are shown in Tables.

Table 1: Results for Letter J.

Single obstacle Multiple obstacles
Method
Minimum error RMSE Minimum error RMSE
APF-DMP 0.0069 0.7097 0.0120 1.8674
Steer-DMP 0.0021 0.8178 0.0021 1.4279
iAPE-DMP 0.0015 0.6507 0.0006 0.9782

The regenerated “J” shaped trajectories produced by different methods demonstrate that,
whether in single-obstacle or multi-obstacle scenarios, the trajectories generated by the DMP with the
improved potential-field-based coupling term are smoother, and their minimum errors are lower than
those of the other two methods. Meanwhile, the RMSE performance is significantly better than that of
the traditional APF method and the steering-angle method, indicating that the proposed method

shows superior performance in maintaining and matching trajectory features.
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4. Conclusion

This paper addresses safe trajectory generation for robotic manipulators in complex and
constrained environments and proposes a DMP-based obstacle-avoidance method using an improved
artificial potential field. To overcome the limitations of conventional DMP coupling terms in stability
and trajectory feature preservation, an exponential distance attenuation mechanism and a
velocity-direction modulation factor are introduced, enabling continuous, smooth, and
direction-aware trajectory adjustment during obstacle avoidance.

Simulation results demonstrate that the proposed method achieves stable obstacle avoidance in
both single- and multi-obstacle scenarios and outperforms the traditional artificial potential field and
steering-angle methods in terms of minimum error and RMSE. The method effectively preserves the
overall shape of demonstrated trajectories while improving smoothness and adaptability. Future
work will extend the approach to high-degree-of-freedom manipulators and dynamic obstacle
environments and integrate sensor feedback and learning-based strategies to enhance robustness in

real robotic systems.
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