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Abstract: Dynamic Movement Primitives (DMPs) are widely used in robotic trajectory 
generation and imitation learning due to their stability, parameter tunability, and generalization 
capability. However, most existing DMP-based obstacle avoidance methods rely on conventional 
artificial potential fields, which often suffer from trajectory oscillations, shape distortion, and 
loss of demonstrated features in complex environments. To address these issues, this paper 
proposes an obstacle-avoidance trajectory generation method for DMPs based on an improved 
artificial potential field. By incorporating an exponential distance attenuation function and a 
velocity-direction modulation mechanism into the coupling term, the proposed method achieves 
improved continuity and stability of the obstacle avoidance force in both spatial and directional 
domains, enabling adaptive local deformation of demonstrated trajectories. While preserving the 
original convergence property and modular structure of DMPs, the proposed approach 
significantly enhances trajectory smoothness and obstacle avoidance stability in both single- and 
multi-obstacle scenarios. Simulation results based on handwritten trajectory data demonstrate 
that the proposed method outperforms the conventional artificial potential field and 
steering-angle methods in terms of minimum error and root-mean-square error (RMSE), while 
better preserving demonstrated trajectory features. 
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1. Introduction 

With the rapid development of intelligent manufacturing and service robotics, the demand for 
autonomous robotic manipulation in industrial assembly, collaborative operations, and complex 
environments has been steadily increasing. Traditional robot trajectory planning methods typically 
rely on predefined models, static environment assumptions, or strict dynamic constraints, which 
limits their adaptability to real-time obstacle avoidance and flexible trajectory generation in dynamic 
environments. Learning from Demonstration (LfD), as an efficient imitation learning paradigm, 
enables robots to autonomously acquire new skills by imitating human-provided demonstration 
trajectories, allowing rapid adaptation to diverse and dynamic industrial scenarios without frequent 
manual reprogramming [1,2]. 

Among various LfD approaches, Dynamic Movement Primitives (DMPs) have been widely 
adopted for robotic motion generation due to their stable convergence properties, parameter 
tunability, and strong generalization capability [3]. DMPs can reproduce target motions from 
demonstrations and incorporate external coupling terms, making them suitable for real-time obstacle 
avoidance and dynamic environment adaptation [4]. However, the coupling terms in classical DMPs 
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are usually manually designed and often struggle to simultaneously ensure obstacle-avoidance 
stability, trajectory smoothness, and generalization performance. 

Standard DMP-based obstacle avoidance methods exhibit limited adaptability in 
high-dimensional or constrained workspaces, and may suffer from unstable avoidance forces, 
unsmooth trajectories, or insufficient responsiveness to dynamic obstacles. To address these 
limitations, this paper proposes a DMP trajectory generation method based on an improved artificial 
potential field coupling term, aiming to enhance trajectory reproduction capability and 
obstacle-avoidance stability in complex environments. 

 
2 Theoretical Description of the Improved DMP 
2.1 DMP Theory 

Dynamic Movement Primitives (DMPs) are a robot motion generation method based on 
dynamical systems. The basic form of the DMP system is defined as: 

�𝜏𝜏𝑣̇𝑣 = 𝛼𝛼𝑦𝑦�𝛽𝛽𝑦𝑦(𝑔𝑔 − 𝑦𝑦) − 𝑣𝑣� + 𝑓𝑓(𝑥𝑥)
𝜏𝜏𝑦̇𝑦 = 𝑣𝑣

(1) 

where 𝑦𝑦 denotes the current position, 𝑣𝑣 = 𝑦̇𝑦 denotes the velocity, 𝑔𝑔 denotes the goal point, 𝜏𝜏 
is the temporal scaling factor that controls the execution speed of the trajectory, 𝛼𝛼𝑦𝑦 ,𝛽𝛽𝑦𝑦 is the damping 
coefficient, The forcing term 𝑓𝑓(𝑥𝑥) is used to learn the motion features contained in the demonstrated 
trajectory, ensuring that the generated trajectory follows the demonstrated curve. The canonical 
system in the DMP framework is defined as: 

𝜏𝜏𝑥̇𝑥 = −𝛼𝛼𝑥𝑥𝑥𝑥 (2) 
where 𝑥𝑥  is the internal phase variable that decays from 1 to 0 over time, and 𝛼𝛼𝑥𝑥  is the 

coefficient controlling the decay speed. 𝑥𝑥 ensures that the forcing term changes with time and 
naturally decays as the trajectory approaches the end point. 

The forcing term in traditional DMPs adopts a linear combination form: 

𝑓𝑓(𝑥𝑥) =
∑  𝑁𝑁
𝑖𝑖=1  𝜓𝜓𝑖𝑖(𝑥𝑥)𝑤𝑤𝑖𝑖
∑  𝑁𝑁
𝑖𝑖=1  𝜓𝜓𝑖𝑖(𝑥𝑥) 𝑥𝑥(𝑔𝑔 − 𝑦𝑦0) (3) 

where the basic functions are Gaussian functions: 
𝜓𝜓𝑖𝑖(𝑥𝑥) = exp (−ℎ𝑖𝑖(𝑥𝑥 − 𝑐𝑐𝑖𝑖)2) (4) 

where 𝑐𝑐𝑖𝑖  denotes the center of the basis function, ℎ𝑖𝑖  denotes the width parameter, 𝑤𝑤𝑖𝑖  and 
denotes the weight, which must be obtained by learning from the demonstration trajectory. Given a 
demonstration trajectory (𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 , 𝑦̇𝑦𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 , 𝑦̈𝑦𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑), the target forcing term of the DMP can be expressed 
as: 

𝑓𝑓target(𝑡𝑡) = 𝜏𝜏𝑣̇𝑣𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) − 𝛼𝛼𝑦𝑦�𝛽𝛽𝑦𝑦�𝑔𝑔 − 𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡)� − 𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡)� (5) 
which 𝑣̇𝑣𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑦̈𝑦𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  is obtained by substituting the demonstrated trajectory into the DMP 

dynamic equation and solving backward. The weights 𝑤𝑤𝑖𝑖  can be computed using local weighted 
regression (LWR). 

 
2.2 Improved Artificial Potential Field Method 

The artificial potential field (APF) method is a classical robot trajectory planning method, first 
proposed by Khatib and widely applied in robot trajectory planning [5]. It is defined as: 

𝐹𝐹rep(𝑦𝑦) = �
𝜂𝜂
2
�

1
𝑑𝑑(𝑦𝑦) −

1
𝑑𝑑0
�
2

, 𝑑𝑑(𝑦𝑦) < 𝑑𝑑0

0, 𝑑𝑑(𝑦𝑦) ≥ 𝑑𝑑0
(6) 
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where 𝑑𝑑(𝑦𝑦) = ‖𝑦𝑦 − 𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜‖ denotes the distance between the robot and the obstacle, 𝑑𝑑0 denotes 
the action radius, and 𝜂𝜂 denotes the gain coefficient. A smaller distance results in a larger force, and 
when the distance exceeds the action range, no force is applied. 

In conventional potential field methods, the repulsive term depends solely on distance, which 
may cause abrupt force variations and severe trajectory oscillations. To address these issues and 
integrate obstacle avoidance into DMPs, an improved APF coupling term (iAPF-DMP) is proposed by 
incorporating exponential distance attenuation and a velocity influence factor. the proposed method 
jointly considers both distance and velocity, it is defined as 

𝐶𝐶 = 𝑘𝑘� 𝑤𝑤𝑣𝑣
𝑟𝑟𝑖𝑖
‖𝑟𝑟𝑖𝑖‖

exp�−
‖𝑟𝑟𝑖𝑖‖
𝑑𝑑0

�
𝑁𝑁

𝑖𝑖=1
(7) 

where 𝑘𝑘 denotes the gain coefficient of the coupling term, 𝑟𝑟𝑖𝑖 = 𝑜𝑜 − 𝑝𝑝𝑖𝑖  denotes the relative 
position vector, o denotes the obstacle position, p denotes the current robot position, 𝑑𝑑0 denotes the 
influence radius of the obstacle, and 𝑤𝑤𝑣𝑣 is defined as: 

𝑤𝑤𝑣𝑣 = 1 + 𝜆𝜆 ⋅ 𝑚𝑚𝑚𝑚𝑚𝑚 �0,
𝑣𝑣
‖𝑣𝑣‖

⋅
𝑜𝑜 − 𝑝𝑝𝑖𝑖
‖𝑜𝑜 − 𝑝𝑝𝑖𝑖‖

� (8) 

where 𝜆𝜆  denotes the velocity sensitivity coefficient and 𝑤𝑤𝑣𝑣used to adjust the influence of 
velocity on the coupling term. The improved transformation system is therefore written as: 

𝜏𝜏𝑣̇𝑣 = 𝛼𝛼𝑦𝑦�𝛽𝛽𝑦𝑦(𝑔𝑔 − 𝑦𝑦)− 𝑣𝑣�+ 𝑓𝑓(𝑥𝑥) + 𝐶𝐶 (9) 
where 𝐶𝐶 represents the additional force coupling term added to the DMP. 

 

 

Figure 1: Artificial Potential Field Method. 

 
Figure 1 illustrates the trajectory adjustment process of DMP combined with the improved 

artificial potential field method for obstacle avoidance. When the robot moves along the 
demonstrated trajectory in the direction of its velocity vector v, it is affected by the repulsive force 
𝐹𝐹rep generated by nearby obstacles. This repulsive force typically varies with the distance and the v 
between the trajectory and the obstacle, ensuring stronger repulsion as the robot gets closer to the 
obstacle, thereby enabling trajectory adjustment. The adjusted trajectory balances the two core goals 
of DMP obstacle avoidance: maintaining progress toward the target point and achieving collision-free 
motion through real-time potential field modulation. 

 
3. Experimental Study 

The experiments in this section aim to quantitatively analyze the effectiveness of the method 
introduced in Chapter 3. The trajectories in the handwriting dataset are used as demonstration data 
[6]. The proposed method is compared with the traditional artificial potential field method 
(APF-DMP) and the classical steering-angle method (Steer-DMP). 
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Figure 2: Comparison for letter J. 

 
Figure 2 compares the regenerated obstacle-avoidance trajectories produced by the traditional 

artificial potential field method, the steering-angle method, and the proposed improved potential 
field method. In this experiment, the same demonstration trajectory is used, with obstacles located at 
(5.2, 2.5) and (−2, −8) and radii of 1.5 and 1.1, respectively. Although both the traditional potential 
field and steering-angle methods can achieve obstacle avoidance, they exhibit notable limitations, 
including loss of key trajectory features in obstacle regions. The traditional potential field method 
significantly degrades trajectory smoothness, while the steering-angle method causes large local 
deformations and may introduce premature avoidance, resulting in insufficient feature preservation. 
These issues arise because the repulsive force in the traditional potential field method depends solely 
on spatial distance, leading to unstable directional disturbances near obstacle boundaries, whereas the 
steering-angle method may apply strong corrections before collision risk becomes significant. In 
contrast, the proposed method better preserves the overall trajectory shape while maintaining 
smoothness and the characteristic “J” pattern during obstacle avoidance. 

The results show that the proposed method can avoid obstacles under different scenarios, fully 
demonstrating its effectiveness. To more intuitively present the trajectory learning ability and 
feature-preservation capability, the minimum error and RMSE are used as evaluation indicators for 
quantitative analysis, and the results are shown in Tables. 
 

Table 1: Results for Letter J. 

Method 
Single obstacle Multiple obstacles 

Minimum error RMSE Minimum error RMSE 
APF-DMP 0.0069 0.7097 0.0120 1.8674 
Steer-DMP 0.0021 0.8178 0.0021 1.4279 
iAPF-DMP 0.0015 0.6507 0.0006 0.9782 

 
The regenerated “J” shaped trajectories produced by different methods demonstrate that, 

whether in single-obstacle or multi-obstacle scenarios, the trajectories generated by the DMP with the 
improved potential-field-based coupling term are smoother, and their minimum errors are lower than 
those of the other two methods. Meanwhile, the RMSE performance is significantly better than that of 
the traditional APF method and the steering-angle method, indicating that the proposed method 
shows superior performance in maintaining and matching trajectory features. 
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4. Conclusion 
This paper addresses safe trajectory generation for robotic manipulators in complex and 

constrained environments and proposes a DMP-based obstacle-avoidance method using an improved 
artificial potential field. To overcome the limitations of conventional DMP coupling terms in stability 
and trajectory feature preservation, an exponential distance attenuation mechanism and a 
velocity-direction modulation factor are introduced, enabling continuous, smooth, and 
direction-aware trajectory adjustment during obstacle avoidance. 

Simulation results demonstrate that the proposed method achieves stable obstacle avoidance in 
both single- and multi-obstacle scenarios and outperforms the traditional artificial potential field and 
steering-angle methods in terms of minimum error and RMSE. The method effectively preserves the 
overall shape of demonstrated trajectories while improving smoothness and adaptability. Future 
work will extend the approach to high-degree-of-freedom manipulators and dynamic obstacle 
environments and integrate sensor feedback and learning-based strategies to enhance robustness in 
real robotic systems. 
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