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Abstract: To address the problems of low efficiency and poor adaptability in path planning for 
current intelligent warehouse systems, this paper proposes an improved A* algorithm for path 
planning of intelligent vehicles in indoor warehouse environments. By optimizing the heuristic 
function, introducing a dynamic weight mechanism, and implementing path smoothing, the 
algorithm improves computational efficiency and path quality while maintaining path 
optimality. Experimental results show that the improved algorithm reduces planning time by 
approximately 25% and decreases path turning points by 40% compared to the traditional A* 
algorithm. The proposed approach effectively handles scenarios with both static and dynamic 
obstacles in warehouse environments. This research provides a practical solution for path 
planning in intelligent warehouse systems and demonstrates significant engineering application 
value. 
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1. Introduction 

The rapid advancement of intelligent logistics systems has significantly increased the demand for 
efficient automation technologies in modern warehousing operations. Among these technologies, 
autonomous guided vehicles (AGVs) have emerged as critical components in smart warehouse 
environments [1], with path planning capability serving as a fundamental determinant of their 
operational efficiency. As warehouse layouts grow more complex and throughput requirements 
continue to rise, the limitations of conventional path planning algorithms have become increasingly 
apparent in practical applications [2]. 

Traditional path planning approaches, particularly the standard A* algorithm, face multiple 
challenges when deployed in dynamic warehouse settings. These algorithms often generate paths 
with excessive turning points that increase vehicle wear and energy consumption. Additionally, their 
computational inefficiency becomes problematic in large-scale warehouse environments where 
real-time responsiveness is essential. Most critically, conventional methods demonstrate limited 
adaptability when confronted with dynamic obstacles such as moving personnel, other vehicles, or 
temporarily reconfigured storage areas. 

This paper addresses these challenges through the development of an enhanced A* algorithm 
specifically optimized for intelligent warehouse vehicles. Our approach focuses on three key 
improvements: heuristic function optimization to accelerate convergence, dynamic weight adjustment 
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to balance optimality and efficiency, and post-processing path smoothing to reduce unnecessary 
directional changes. These enhancements collectively improve both computational performance and 
path quality while maintaining robustness in environments with mixed static and dynamic obstacles. 

The remainder of this paper is structured as follows. Section 2 reviews the theoretical 
foundations of the A* algorithm and identifies specific limitations in warehouse applications. Section 
3 details our improved algorithm design, including mathematical formulations and implementation 
considerations. Section 4 presents comprehensive experimental validation through simulation and 
comparative analysis with traditional approaches. Finally, Section 5 summarizes our contributions 
and suggests directions for future research. 

 
2. Fundamentals of A* Algorithm and Problem Analysis 

The A* algorithm, proposed by Hart et al. [3], represents one of the most widely used heuristic 
search algorithms for path planning in grid-based environments. Its optimality and completeness 
properties make it particularly suitable for applications requiring guaranteed shortest paths. The 
algorithm evaluates nodes using the function: 

𝐹𝐹(𝑛𝑛) = 𝐺𝐺(𝑛𝑛) +𝐻𝐻(𝑛𝑛) (1) 
where F(n) represents the total estimated cost of path through node n, G(n) is the actual cost 

from the start node to node nn, and H(n) is the heuristic estimate of the cost from node nn to the goal. 
The algorithm maintains two critical data structures: the open list containing nodes to be evaluated, 
and the closed list containing already evaluated nodes. At each iteration, the algorithm selects the 
node with the lowest F(n) value from the open list, evaluates its neighbors, and transfers it to the 
closed list. This process continues until the goal node is reached or the open list is exhausted. 
 

 
Figure 1: Overall Architecture Diagram. 

 
The performance of A* is heavily dependent on the choice of heuristic function H(n)H(n). In 

grid-based warehouse environments, three commonly used heuristics include [4]: 
Manhattan distance: 𝐻𝐻(𝑛𝑛) = �𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑔𝑔� + �𝑦𝑦𝑛𝑛 − 𝑦𝑦𝑔𝑔� 
Euclidean distance: 𝐻𝐻(𝑛𝑛) = �(𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑔𝑔)2 + (𝑦𝑦𝑛𝑛 − 𝑦𝑦𝑔𝑔)2 
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Chebyshev distance: 𝐻𝐻(𝑛𝑛) = 𝑚𝑚𝑚𝑚𝑚𝑚�∣ 𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑔𝑔 ∣, ∣ 𝑦𝑦𝑛𝑛 − 𝑦𝑦𝑔𝑔 ∣� 
Where (𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛)  represents the coordinates of node 𝑛𝑛  and �𝑥𝑥𝑔𝑔,𝑦𝑦𝑔𝑔�  represents the goal 

coordinates. While Manhattan distance is admissible for 4-connected grids and Euclidean distance for 
8-connected grids, the choice significantly impacts both computational efficiency and path quality. 
 

 
Figure 2: Traditional A* Path Planning Example with Unnecessary Turning Points. 

 
Despite its theoretical advantages, the traditional A* algorithm exhibits several limitations when 

applied to warehouse environments: 
First, computational efficiency deteriorates significantly in large-scale warehouse maps [5]. The 

algorithm's time complexity of 𝑂𝑂(𝑏𝑏𝑑𝑑) (where 𝑏𝑏 is branching factor and dd is solution depth) results 
in impractical computation times for warehouses exceeding 50m × 50m with fine-grained resolution. 
This limitation becomes critical in dynamic environments requiring frequent replanning. 

Second, paths generated by standard A* often contain numerous unnecessary turning points, 
particularly when using Manhattan distance in 8-connected grids (Fig. 3) [6]. These "staircase" 
patterns increase vehicle wear, energy consumption, and traversal time compared to smoother 
alternatives. 
 

 
Figure 3: Comparison of Different Heuristic Functions in A* Algorithm. 

 
Third, the static nature of traditional A* makes it fundamentally unsuited for environments with 

dynamic obstacles [7]. The algorithm requires complete replanning when obstacles move, causing 
delays and potential deadlocks in multi-vehicle systems. 
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Finally, conventional implementations focus exclusively on path length minimization, neglecting 
energy efficiency considerations specific to warehouse vehicles. Turning maneuvers consume 
significantly more energy than straight-line motion, yet standard A* provides no mechanism to 
optimize for this critical operational parameter. 
 
3 Improved A* Algorithm Design 

To address the limitations of traditional A* algorithm in warehouse environments, this section 
presents a comprehensive enhancement strategy incorporating heuristic function optimization, 
dynamic weight adjustment, and path smoothing techniques. 
 
3.1 Heuristic Function Optimization 

The standard heuristic function is enhanced by introducing an environmental complexity factor 
α that adapts to local obstacle distribution. The modified heuristic is defined as [8]: 

𝐻𝐻′(𝑛𝑛) = 𝐻𝐻(𝑛𝑛) × �1 + 𝛼𝛼 × 𝜌𝜌(𝑛𝑛)� (2) 
where 𝜌𝜌(𝑛𝑛) represents the obstacle density within a radius r of node n, calculated as the ratio of 

obstacle cells to total cells. The complexity factor αα is dynamically adjusted based on map 
characteristics, ranging from 0.1 in open areas to 0.5 in narrow passages. This adaptation significantly 
improves search efficiency by directing the algorithm away from congested regions when alternative 
paths exist. 

 
3.2 Dynamic Weight Adjustment Strategy 

To balance optimality and computational efficiency, we implement a depth-dependent weight 
coefficient w(n) in the evaluation function: 

𝐹𝐹(𝑛𝑛) = 𝐺𝐺(𝑛𝑛) + 𝑤𝑤(𝑛𝑛) × 𝐻𝐻(𝑛𝑛) (3) 

where 𝑤𝑤(𝑛𝑛) = 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 − (𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚) × 𝑑𝑑(𝑛𝑛)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

. Here, 𝑑𝑑(𝑛𝑛) is the search depth of node n, 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 =

2.0 and 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 = 1.0 represent the weight boundaries, and 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚  is the maximum expected search 
depth. This formulation prioritizes heuristic guidance during early search phases for rapid 
convergence, while gradually emphasizing path optimality near the goal. The weight adjustment 
threshold is set at 70% of 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚  , beyond which w(n) remains constant to ensure solution quality (Fig. 
5). 
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Figure 5: Dynamic Weight Adjustment Curve. 

3.3 Path Smoothing Techniques 
The raw path generated by A* undergoes a three-stage post-processing optimization: 
Laplacian smoothing is applied to reduce high-frequency oscillations while preserving path 

connectivity [9]. For each path point 𝑝𝑝𝑖𝑖 , its new position is calculated as 𝑝𝑝𝑖𝑖′ = 𝑝𝑝𝑖𝑖 + 𝜆𝜆(𝑝𝑝𝑖𝑖−1 + 𝑝𝑝𝑖𝑖 + 1 −
2𝑝𝑝𝑖𝑖), where λ=0.4 balances smoothness and deviation constraints. 

A turning point consolidation algorithm merges consecutive collinear segments by identifying 
points where the directional change exceeds a threshold angle θ=15°. 

A safety margin mechanism ensures minimum distance δ=0.8m from obstacles by offsetting path 
segments near warehouse shelves, preventing potential collisions during vehicle execution [10] (Fig. 
6). 

 

Figure 6: Path Smoothing Comparison. 

 
3.4 Algorithm Implementation and Complexity 

The complete improved A* algorithm integrates these enhancements into a cohesive framework. 
As shown in Fig. 6, the algorithm begins with environment analysis to determine initial parameters, 
followed by the modified search process and path post-processing. The pseudocode maintains the 
core A* structure with additional steps for weight adjustment and complexity factor calculation. 

The time complexity remains 𝑂𝑂(𝑏𝑏𝑑𝑑)  in worst-case scenarios but demonstrates significant 
practical improvement. The environmental complexity factor reduces the effective branching factor 
by 30-40% in typical warehouse layouts, while the dynamic weighting strategy decreases average 
node expansions by 25%. Memory complexity remains 𝑂𝑂(𝑏𝑏𝑑𝑑) but with reduced constant factors due 
to more directed search behavior. Experimental results in Section 4 confirm these theoretical 
improvements, showing particular effectiveness in large-scale warehouse environments with mixed 
obstacle densities (Fig. 7). 
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Figure 7: Node Expansion Comparison Between Traditional and Improved A* Algorithms. 

 
4. Simulation and Experimental Validation 

To validate the performance of the proposed improved A* algorithm, comprehensive 
simulations were conducted in a virtual warehouse environment. This section details the 
experimental setup, methodology, and comparative results against traditional path planning 
approaches. 

 
4.1 Simulation Environment and Experimental Setup 

The simulation environment was constructed as a 20m×20m standard warehouse layout 
represented as a grid map with 0.5m×0.5m resolution, resulting in an 40×40 node grid.[11] The 
environment incorporated realistic warehouse elements including static obstacles representing 
shelves arranged in typical configurations, and dynamic obstacles simulating human workers and 
other AGVs. The dynamic obstacles moved at speeds between 0.5-1.5m/s following predefined or 
random trajectories. All simulations were implemented in Python 3.9 using NumPy for mathematical 
operations and Matplotlib for visualization, running on a workstation with Intel i7-11800H processor 
and 32GB RAM. 

The experimental parameters were carefully calibrated based on warehouse operational 
requirements. The dynamic weight coefficient was initialized at w₀=1.5 with an adjustment step of 0.1 
during search progression. The environmental complexity factor α was set to adapt between 0.1-0.5 
based on local obstacle density. For fair comparison, all algorithms used identical start and goal 
positions across test scenarios, with 50 different path planning tasks distributed throughout the 
warehouse environment. Each algorithm was evaluated using four key metrics: planning time (ms), 
path length (m), number of turning points, and path smoothness measured by average curvature. 
 
4.2 Comparative Analysis and Results 

Figure 8 illustrates the simulation environment with its warehouse layout, shelf positions, and 
multiple path planning scenarios. The environment was designed to represent a realistic warehouse 
with high-density storage areas, narrow passages, and open zones, providing a comprehensive 
testbed for path planning algorithms. 
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Figure 8: Simulation Environment -20mx20m Warehouse Layout. 

 
Figure 9 presents a visual comparison of paths generated by three algorithms: the proposed 

improved A*, traditional A*, and Dijkstra's algorithm. The visualization clearly demonstrates how the 
improved A* generates smoother paths with fewer unnecessary turns compared to the other 
algorithms. Traditional A* produces a characteristic "staircase" pattern when using Manhattan 
distance, while Dijkstra's algorithm, lacking heuristic guidance, explores significantly more nodes and 
generates less direct paths. The improved algorithm maintains near-optimal path length while 
substantially enhancing path quality. 

 

 
Figure 9: Path Planning Comparison of Three Algorithms. 

 
Quantitative performance metrics reveal significant improvements across all evaluation criteria 
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(Figure 10). The proposed algorithm reduced planning time by 25.3% compared to traditional A* and 
by 41.7% compared to Dijkstra's algorithm. This efficiency gain stems from the adaptive weighting 
strategy that focuses the search toward promising directions. Path quality improvements were 
equally substantial, with 40.2% fewer turning points and 35.7% lower average curvature, directly 
translating to reduced energy consumption and mechanical wear during AGV operation. In dynamic 
scenarios with moving obstacles, the improved algorithm demonstrated a 28.9% higher success rate in 
reaching the goal without collisions compared to traditional approaches. 

 
Figure 10: Path Planning Comparison of Three Algorithms. 

 
The dynamic weight adjustment mechanism proved particularly effective in balancing 

optimality and computational efficiency. By prioritizing heuristic guidance during early search 
phases and gradually emphasizing path optimality near the goal, the algorithm achieved 
near-optimal paths with significantly reduced computation time. The environmental complexity 
factor further enhanced performance by directing the search away from congested areas when 
alternatives existed, reducing unnecessary node expansions in complex regions. 

 
5. Conclusion and Outlook 

This research has successfully validated the effectiveness of the improved A* algorithm for 
warehouse AGV path planning. The proposed approach effectively addresses the limitations of 
traditional algorithms by integrating dynamic weight adjustment, environmental complexity analysis, 
and path smoothing techniques. Experimental results demonstrate significant improvements across 
multiple performance metrics, with a 25.3% reduction in planning time and 40.2% fewer turning 
points compared to conventional implementations. The research also provides practical guidelines for 
parameter configuration, particularly the adaptive weight coefficient that balances optimality and 
computational efficiency. 

The practical value of this work is substantial. Implementation in real warehouse environments 
has demonstrated approximately 18% reduction in AGV energy consumption due to smoother 
trajectories requiring fewer acceleration/deceleration cycles [12]. The algorithm also extends 
equipment operational life by reducing mechanical stress from frequent directional changes while 
increasing overall warehouse throughput capacity. 

Future research directions include extending the framework to multi-AGV coordination 
scenarios with conflict avoidance strategies, integrating deep learning techniques to handle highly 
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dynamic and uncertain environments, and optimizing the algorithm for embedded hardware 
platforms with limited computational resources. Additionally, incorporating predictive modeling of 
human worker movements could further enhance safety and efficiency in human-robot collaborative 
warehouse settings. These advancements will contribute to the development of more intelligent, 
adaptive, and energy-efficient autonomous logistics systems. 
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