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Abstract: To address the problems of low efficiency and poor adaptability in path planning for
current intelligent warehouse systems, this paper proposes an improved A* algorithm for path
planning of intelligent vehicles in indoor warehouse environments. By optimizing the heuristic
function, introducing a dynamic weight mechanism, and implementing path smoothing, the
algorithm improves computational efficiency and path quality while maintaining path
optimality. Experimental results show that the improved algorithm reduces planning time by
approximately 25% and decreases path turning points by 40% compared to the traditional A*
algorithm. The proposed approach effectively handles scenarios with both static and dynamic
obstacles in warehouse environments. This research provides a practical solution for path
planning in intelligent warehouse systems and demonstrates significant engineering application

value.
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1. Introduction

The rapid advancement of intelligent logistics systems has significantly increased the demand for
efficient automation technologies in modern warehousing operations. Among these technologies,
autonomous guided vehicles (AGVs) have emerged as critical components in smart warehouse
environments [1], with path planning capability serving as a fundamental determinant of their
operational efficiency. As warehouse layouts grow more complex and throughput requirements
continue to rise, the limitations of conventional path planning algorithms have become increasingly
apparent in practical applications [2].

Traditional path planning approaches, particularly the standard A* algorithm, face multiple
challenges when deployed in dynamic warehouse settings. These algorithms often generate paths
with excessive turning points that increase vehicle wear and energy consumption. Additionally, their
computational inefficiency becomes problematic in large-scale warehouse environments where
real-time responsiveness is essential. Most critically, conventional methods demonstrate limited
adaptability when confronted with dynamic obstacles such as moving personnel, other vehicles, or
temporarily reconfigured storage areas.

This paper addresses these challenges through the development of an enhanced A* algorithm
specifically optimized for intelligent warehouse vehicles. Our approach focuses on three key

improvements: heuristic function optimization to accelerate convergence, dynamic weight adjustment
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to balance optimality and efficiency, and post-processing path smoothing to reduce unnecessary
directional changes. These enhancements collectively improve both computational performance and
path quality while maintaining robustness in environments with mixed static and dynamic obstacles.
The remainder of this paper is structured as follows. Section 2 reviews the theoretical
foundations of the A* algorithm and identifies specific limitations in warehouse applications. Section
3 details our improved algorithm design, including mathematical formulations and implementation
considerations. Section 4 presents comprehensive experimental validation through simulation and
comparative analysis with traditional approaches. Finally, Section 5 summarizes our contributions

and suggests directions for future research.

2. Fundamentals of A* Algorithm and Problem Analysis

The A* algorithm, proposed by Hart et al. [3], represents one of the most widely used heuristic
search algorithms for path planning in grid-based environments. Its optimality and completeness
properties make it particularly suitable for applications requiring guaranteed shortest paths. The
algorithm evaluates nodes using the function:

Fn)=Gn) +HMn) (1D

where F(n) represents the total estimated cost of path through node n, G(n) is the actual cost
from the start node to node nn, and H(n) is the heuristic estimate of the cost from node nn to the goal.
The algorithm maintains two critical data structures: the open list containing nodes to be evaluated,
and the closed list containing already evaluated nodes. At each iteration, the algorithm selects the
node with the lowest F(n) value from the open list, evaluates its neighbors, and transfers it to the
closed list. This process continues until the goal node is reached or the open list is exhausted.

Fig. 1: A* Algorithm Working Principle
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Figure 1: Overall Architecture Diagram.

The performance of A* is heavily dependent on the choice of heuristic function Hn)H(n). In
grid-based warehouse environments, three commonly used heuristics include [4]:

Manhattan distance: H,y = |xn - xg| + | Yn — yg|

Euclidean distance: H(n) = \/ (X — x9)% + (Y — ¥g)?
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Where (x,,¥,) represents the coordinates of node n and (xg,yg) represents the goal

coordinates. While Manhattan distance is admissible for 4-connected grids and Euclidean distance for

8-connected grids, the choice significantly impacts both computational efficiency and path quality.

Fig. 2: Traditional A* Path Planning Example with Unnecessary Turning Points
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Figure 2: Traditional A* Path Planning Example with Unnecessary Turning Points.

Despite its theoretical advantages, the traditional A* algorithm exhibits several limitations when

applied to warehouse environments:

First, computational efficiency deteriorates significantly in large-scale warehouse maps [5]. The

algorithm's time complexity of 0(b%) (where b is branching factor and dd is solution depth) results

in impractical computation times for warehouses exceeding 50m x 50m with fine-grained resolution.

This limitation becomes critical in dynamic environments requiring frequent replanning.

Second, paths generated by standard A* often contain numerous unnecessary turning points,

particularly when using Manhattan distance in 8-connected grids (Fig. 3) [6]. These "staircase"

patterns increase vehicle wear, energy consumption, and traversal time compared to smoother

alternatives.

Fig. 3: Comparison of Different Heuristic Functions in A* Algorithm
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Figure 3: Comparison of Different Heuristic Functions in A* Algorithm.

Third, the static nature of traditional A* makes it fundamentally unsuited for environments with

dynamic obstacles [7]. The algorithm requires complete replanning when obstacles move, causing

delays and potential deadlocks in multi-vehicle systems.
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Finally, conventional implementations focus exclusively on path length minimization, neglecting
energy efficiency considerations specific to warehouse vehicles. Turning maneuvers consume
significantly more energy than straight-line motion, yet standard A* provides no mechanism to

optimize for this critical operational parameter.

3 Improved A* Algorithm Design
To address the limitations of traditional A* algorithm in warehouse environments, this section
presents a comprehensive enhancement strategy incorporating heuristic function optimization,

dynamic weight adjustment, and path smoothing techniques.

3.1 Heuristic Function Optimization
The standard heuristic function is enhanced by introducing an environmental complexity factor
a that adapts to local obstacle distribution. The modified heuristic is defined as [8]:
H'(n) = H(n) X (1 +ax p(n)) 2
where p(n) represents the obstacle density within a radius r of node n, calculated as the ratio of
obstacle cells to total cells. The complexity factor aa is dynamically adjusted based on map
characteristics, ranging from 0.1 in open areas to 0.5 in narrow passages. This adaptation significantly
improves search efficiency by directing the algorithm away from congested regions when alternative

paths exist.

3.2 Dynamic Weight Adjustment Strategy
To balance optimality and computational efficiency, we implement a depth-dependent weight

coefficient w(n) in the evaluation function:

F(n) = G(n) +wn) x H(n) 3)
where w(n) = Wiax — Wiax — Winin) X d‘ifl)x. Here, d(n) is the search depth of node n, Wy, =

2.0 and wp,;;, = 1.0 represent the weight boundaries, and d,,,, is the maximum expected search
depth. This formulation prioritizes heuristic guidance during early search phases for rapid
convergence, while gradually emphasizing path optimality near the goal. The weight adjustment
threshold is set at 70% of d,4, , beyond which w(n) remains constant to ensure solution quality (Fig.
5).

Fig. 5: Dynamic Weight Adjustment Curve
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Figure 5: Dynamic Weight Adjustment Curve.
3.3 Path Smoothing Techniques

The raw path generated by A* undergoes a three-stage post-processing optimization:

Laplacian smoothing is applied to reduce high-frequency oscillations while preserving path
connectivity [9]. For each path point p;, its new position is calculated as p;" =p; + A(p;_; +p; + 1 —
2p;), where A=0.4 balances smoothness and deviation constraints.

A turning point consolidation algorithm merges consecutive collinear segments by identifying
points where the directional change exceeds a threshold angle 6=15°.

A safety margin mechanism ensures minimum distance d=0.8m from obstacles by offsetting path
segments near warehouse shelves, preventing potential collisions during vehicle execution [10] (Fig.
6).

Fig. 6: Path Smoothing Comparison
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Figure 6: Path Smoothing Comparison.

3.4 Algorithm Implementation and Complexity

The complete improved A* algorithm integrates these enhancements into a cohesive framework.
As shown in Fig. 6, the algorithm begins with environment analysis to determine initial parameters,
followed by the modified search process and path post-processing. The pseudocode maintains the
core A* structure with additional steps for weight adjustment and complexity factor calculation.

The time complexity remains O(b?) in worst-case scenarios but demonstrates significant
practical improvement. The environmental complexity factor reduces the effective branching factor
by 30-40% in typical warehouse layouts, while the dynamic weighting strategy decreases average
node expansions by 25%. Memory complexity remains 0(b?%) but with reduced constant factors due
to more directed search behavior. Experimental results in Section 4 confirm these theoretical
improvements, showing particular effectiveness in large-scale warehouse environments with mixed

obstacle densities (Fig. 7).
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Fig. 7. Node Expansion Comparison Between Traditional and Improved A* Algorithms
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Figure 7: Node Expansion Comparison Between Traditional and Improved A* Algorithms.

4. Simulation and Experimental Validation

To validate the performance of the proposed improved A* algorithm, comprehensive
simulations were conducted in a virtual warehouse environment. This section details the
experimental setup, methodology, and comparative results against traditional path planning

approaches.

4.1 Simulation Environment and Experimental Setup

The simulation environment was constructed as a 20mx20m standard warehouse layout
represented as a grid map with 0.5mx0.5m resolution, resulting in an 40x40 node grid.[11] The
environment incorporated realistic warehouse elements including static obstacles representing
shelves arranged in typical configurations, and dynamic obstacles simulating human workers and
other AGVs. The dynamic obstacles moved at speeds between 0.5-1.5m/s following predefined or
random trajectories. All simulations were implemented in Python 3.9 using NumPy for mathematical
operations and Matplotlib for visualization, running on a workstation with Intel i7-11800H processor
and 32GB RAM.

The experimental parameters were carefully calibrated based on warehouse operational
requirements. The dynamic weight coefficient was initialized at wo=1.5 with an adjustment step of 0.1
during search progression. The environmental complexity factor a was set to adapt between 0.1-0.5
based on local obstacle density. For fair comparison, all algorithms used identical start and goal
positions across test scenarios, with 50 different path planning tasks distributed throughout the
warehouse environment. Each algorithm was evaluated using four key metrics: planning time (ms),

path length (m), number of turning points, and path smoothness measured by average curvature.

4.2 Comparative Analysis and Results

Figure 8 illustrates the simulation environment with its warehouse layout, shelf positions, and
multiple path planning scenarios. The environment was designed to represent a realistic warehouse
with high-density storage areas, narrow passages, and open zones, providing a comprehensive

testbed for path planning algorithms.
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Simulation Environment - 20mx20m Warehouse Layout
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Figure 8: Simulation Environment -20mx20m Warehouse Layout.

Figure 9 presents a visual comparison of paths generated by three algorithms: the proposed
improved A¥, traditional A¥, and Dijkstra's algorithm. The visualization clearly demonstrates how the
improved A* generates smoother paths with fewer unnecessary turns compared to the other
algorithms. Traditional A* produces a characteristic "staircase” pattern when using Manhattan
distance, while Dijkstra's algorithm, lacking heuristic guidance, explores significantly more nodes and
generates less direct paths. The improved algorithm maintains near-optimal path length while

substantially enhancing path quality.

Path Planning Comparison of Three Algorithms
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Figure 9: Path Planning Comparison of Three Algorithms.

Quantitative performance metrics reveal significant improvements across all evaluation criteria
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(Figure 10). The proposed algorithm reduced planning time by 25.3% compared to traditional A* and
by 41.7% compared to Dijkstra's algorithm. This efficiency gain stems from the adaptive weighting
strategy that focuses the search toward promising directions. Path quality improvements were
equally substantial, with 40.2% fewer turning points and 35.7% lower average curvature, directly
translating to reduced energy consumption and mechanical wear during AGV operation. In dynamic
scenarios with moving obstacles, the improved algorithm demonstrated a 28.9% higher success rate in
reaching the goal without collisions compared to traditional approaches.

Planning Time Comparison Across Different Map Complexities
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Figure 10: Path Planning Comparison of Three Algorithms.

The dynamic weight adjustment mechanism proved particularly effective in balancing
optimality and computational efficiency. By prioritizing heuristic guidance during early search
phases and gradually emphasizing path optimality near the goal, the algorithm achieved
near-optimal paths with significantly reduced computation time. The environmental complexity
factor further enhanced performance by directing the search away from congested areas when

alternatives existed, reducing unnecessary node expansions in complex regions.

5. Conclusion and Outlook

This research has successfully validated the effectiveness of the improved A* algorithm for
warehouse AGV path planning. The proposed approach effectively addresses the limitations of
traditional algorithms by integrating dynamic weight adjustment, environmental complexity analysis,
and path smoothing techniques. Experimental results demonstrate significant improvements across
multiple performance metrics, with a 25.3% reduction in planning time and 40.2% fewer turning
points compared to conventional implementations. The research also provides practical guidelines for
parameter configuration, particularly the adaptive weight coefficient that balances optimality and
computational efficiency.

The practical value of this work is substantial. Implementation in real warehouse environments
has demonstrated approximately 18% reduction in AGV energy consumption due to smoother
trajectories requiring fewer acceleration/deceleration cycles [12]. The algorithm also extends
equipment operational life by reducing mechanical stress from frequent directional changes while
increasing overall warehouse throughput capacity.

Future research directions include extending the framework to multi-AGV coordination
scenarios with conflict avoidance strategies, integrating deep learning techniques to handle highly
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dynamic and uncertain environments, and optimizing the algorithm for embedded hardware

platforms with limited computational resources. Additionally, incorporating predictive modeling of

human worker movements could further enhance safety and efficiency in human-robot collaborative

warehouse settings. These advancements will contribute to the development of more intelligent,

adaptive, and energy-efficient autonomous logistics systems.
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